早教吧作业答案频道 -->数学-->
已知函数f(x)=x³-ax²+bx+c.若函数f(x)可以在x=-1和x=3时取得极值.(1)求a,b的值.(2)若f(x)
题目详情
已知函数f(x)=x³-ax²+bx+c.若函数f(x)可以在x=-1和x=3时取得极值.(1)求a,b的值.(2)若f(x)
▼优质解答
答案和解析
(1)求导函数,可得f′(x)=3x2+2a x+b.
由题设,∵函数f(x)=x3+ax2+bx+c在x=1与时,都取得极值.
∴x=1,x=﹣为f′(x)=0的解.
∴﹣a=1﹣,=1×(﹣).
解得a=﹣,b=﹣2
此时,f′(x)=3x2﹣x﹣2=(x﹣1)(x+),
x=1与都是极值点.
(2)(3)由(1)得,f′(x)=(x﹣1)(3x+2),f (x)=x3﹣x2﹣2 x+c,
f (x)在[﹣1,﹣)及(1,2]上递增,在(﹣,1)递减.
而f (﹣)=﹣﹣++c=c+,f (2)=8﹣2﹣4+c=c+2.
∴f (x)在[﹣1,2]上的最大值为c+2.
∴
∴
∴或
∴0<c<1或c<﹣3
由题设,∵函数f(x)=x3+ax2+bx+c在x=1与时,都取得极值.
∴x=1,x=﹣为f′(x)=0的解.
∴﹣a=1﹣,=1×(﹣).
解得a=﹣,b=﹣2
此时,f′(x)=3x2﹣x﹣2=(x﹣1)(x+),
x=1与都是极值点.
(2)(3)由(1)得,f′(x)=(x﹣1)(3x+2),f (x)=x3﹣x2﹣2 x+c,
f (x)在[﹣1,﹣)及(1,2]上递增,在(﹣,1)递减.
而f (﹣)=﹣﹣++c=c+,f (2)=8﹣2﹣4+c=c+2.
∴f (x)在[﹣1,2]上的最大值为c+2.
∴
∴
∴或
∴0<c<1或c<﹣3
看了 已知函数f(x)=x³-ax...的网友还看了以下:
一道有关函数单调性的问题已知f(x)的定义域为实数,且满足两个条件条件1对任意x,y属于实数有f(x 2020-03-30 …
高二不等式比较大小已知f(x)=(1+√(1+x))/x,a、b是两个不相等的实数,则下列不等式正 2020-04-26 …
已知f(x)是定义在区间[-1,1]上的奇函数,且f(1)=1,若m,n€[-1,1],m+n不等 2020-05-16 …
已知f(x)在定义域(0,正无穷)且f(x)为增函数.f(xy)=f(x)+f(y),f(3)=1 2020-06-02 …
高一基础分段函数题两道(30)一,已知f(x)=X^2,X>0,1,X=0-2X+1,X<01,画 2020-07-20 …
已知f(x)在(-1,1)上有定义f(12)=1,且满足x,y∈(-1,1)有f(x)-f(y)= 2020-07-26 …
已知f(x)是定义在自然数集N*上的函数,当x=2n-1(n属于N*)时,有f(x+1)-f(x) 2020-07-27 …
已知f(x)是定义(-00,+00)上的奇函数且f(x)在[0,+00)上是减函数,下列关系正确的 2020-08-01 …
已知函数f(x)=x^2+x+c,若f(0)>0,f(p)<0,则必有?1.f(p+1)>02.f( 2020-12-08 …
已知f(x)在R上是增函已知f(x)在R上是增函数,a,b∈R,且a+b≤0,则有[]A、f(a)+ 2020-12-08 …