早教吧作业答案频道 -->其他-->
(2012•乌鲁木齐)如图,AB是⊙O的直径,C为圆周上的一点,过点C的直线MN满足∠MCA=∠CBA.(1)求证:直线MN是⊙O的切线;(2)过点A作AD⊥MN于点D,交⊙O于点E,已知AB=6,BC=3,求阴影部分
题目详情
(2012•乌鲁木齐)如图,AB是⊙O的直径,C为圆周上的一点,过点C的直线MN满足∠MCA=∠CBA.(1)求证:直线MN是⊙O的切线;
(2)过点A作AD⊥MN于点D,交⊙O于点E,已知AB=6,BC=3,求阴影部分的面积.
▼优质解答
答案和解析
(1)证明:连接OC,
∵AB是⊙O直径,C为圆周上的一点,
∴∠ACB=90°,即∠ACO+∠OCB=90°,
∵OC=OB,
∴∠OCB=∠OBC,又∠MCA=∠CBA,
∴∠MCA=∠OCB,
∴∠ACO+∠MCA=90°,
即OC⊥MN,
∵OC为半径,
∴直线MN是⊙O的切线;
(2)连接OE,CE,
由(1)OC⊥MN,AD⊥MN,得OC∥AE,
在Rt△ACB中,cos∠B=
=
,
∴∠B=60°,
∴OC=OB=BC=3,
∴△OBC是等边三角形,
∴∠COB=60°,
∵OC∥AE,
∴∠EAO=∠COB=60°,
∵OE=OA,
∴△OEA是等边三角形,
∴OC=AE,四边形AOCE是平行四边形,故S△EAC=S△EOC,
于是S阴影=S△ADC-S扇形EOC,
在Rt△ACB中,BC=3,AB=6,∴AC=3
,
在Rt△ADC中,AC=3
,∠DCA=∠B=60°,∴DC=
,AD=
,
∴S△ADC=
AD•DC=
,而S扇形EOC=
=
,
于是S阴=S△ADC-S扇形EOC=
.

∵AB是⊙O直径,C为圆周上的一点,
∴∠ACB=90°,即∠ACO+∠OCB=90°,
∵OC=OB,
∴∠OCB=∠OBC,又∠MCA=∠CBA,
∴∠MCA=∠OCB,
∴∠ACO+∠MCA=90°,
即OC⊥MN,
∵OC为半径,
∴直线MN是⊙O的切线;
(2)连接OE,CE,

由(1)OC⊥MN,AD⊥MN,得OC∥AE,
在Rt△ACB中,cos∠B=
| BC |
| AB |
| 1 |
| 2 |
∴∠B=60°,
∴OC=OB=BC=3,
∴△OBC是等边三角形,
∴∠COB=60°,
∵OC∥AE,
∴∠EAO=∠COB=60°,
∵OE=OA,
∴△OEA是等边三角形,
∴OC=AE,四边形AOCE是平行四边形,故S△EAC=S△EOC,
于是S阴影=S△ADC-S扇形EOC,
在Rt△ACB中,BC=3,AB=6,∴AC=3
| 3 |
在Rt△ADC中,AC=3
| 3 |
| 3 |
| 2 |
| 3 |
| 9 |
| 2 |
∴S△ADC=
| 1 |
| 2 |
27
| ||
| 8 |
| 60π×32 |
| 360 |
| 3π |
| 2 |
于是S阴=S△ADC-S扇形EOC=
27
| ||
| 8 |
看了 (2012•乌鲁木齐)如图,...的网友还看了以下:
已知圆o:x^2y^2=4和点M(1,a).若a=3,求过点M作圆O的切线的切线长已知圆o:x^2 2020-04-27 …
一个很简单很简单的圆的证明题..PA、PB仕⊙O的切线,A、B是切点,∠P=60°,AB=12,求 2020-05-20 …
已知⊙O与直线l相切于A点,点P、Q同时从A点出发,P沿着直线l向右、Q沿着圆周按逆时针以相同的速 2020-05-23 …
已知⊙O与直线l相切于A点,点P、Q同时从A点出发,P沿着直线l向右、Q沿着圆周按逆时针以相同的速 2020-06-12 …
已知⊙O与直线l相切于A点,点P、Q同时从A点出发,P沿着直线l向右、Q沿着圆周按逆时针以相同的速 2020-06-12 …
1在三面投影体系中,已知点A的正面投影a′,(x≠0,z≠0),点A在投影体系中的位置可能是A、点 2020-07-10 …
利用导数求过某点切线方程为什么要代入切点比如求曲线y=x^2+5过点(a,b)的切线方程,设切点坐 2020-07-21 …
数学,紧急!1.已知△ABC的内切圆与边BC相切于点D,且点D恰为BC的中点,∠B=65°,求∠A 2020-07-31 …
如图,一台机器的大轮O1和小轮O2外切于点C,且两轮分别和板面相切于A,B两点.若O1的半径为3c 2020-07-31 …
数学圆锥曲线过双曲线的左焦点F引圆x2+y2=a2的切线,切点为A,延长FA交双曲线右支于过双曲线 2020-08-02 …