早教吧作业答案频道 -->数学-->
在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.(1)求抛物线的解析式;在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.(1)求抛物线的解析式
题目详情
在平面直角坐标系中,已知抛物线经过A(-4,0) ,B(0,-4) ,C(2,0) 三点. (1)求抛物线的解析式;
在平面直角坐标系中,已知抛物线经过A(-4,0) ,B(0,-4) ,C(2,0) 三点.
(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值.
(3)若点P是抛物线上的动点,点Q是直线 上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.
请帮忙做一下第(3)小题,参考答案Q点坐标有四个,可我只能求出前3个,请问Q点坐标为(4,-4)怎么求?
在平面直角坐标系中,已知抛物线经过A(-4,0) ,B(0,-4) ,C(2,0) 三点.
(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值.
(3)若点P是抛物线上的动点,点Q是直线 上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.
请帮忙做一下第(3)小题,参考答案Q点坐标有四个,可我只能求出前3个,请问Q点坐标为(4,-4)怎么求?
▼优质解答
答案和解析
(1)设抛物线解析式为y=ax2+bx+c,
∵抛物线经过A(-4,0),B(0,-4),C(2,0),
∴ 16a-4b+c=0 c=-4 4a+2b+c=0 ,
解得 a=1 2 b=1 c=-4 ,
∴抛物线解析式为y=1 2 x2+x-4;
(2)∵点M的横坐标为m,
∴点M的纵坐标为1 2 m2+m-4,
又∵A(-4,0),
∴AO=0-(-4)=4,
∴S=1 2 ×4×|1 2 m2+m-4|=-(m2+2m-8)=-m2-2m+8,
∵S=-(m2+2m-8)=-(m+1)2+9,点M为第三象限内抛物线上一动点,
∴当m=-1时,S有最大值,最大值为S=9;
故答案为:S关于m的函数关系式为S=-m2-2m+8,当m=-1时,S有最大值9;
(3)∵点Q是直线y=-x上的动点,
∴设点Q的坐标为(a,-a),
∵点P在抛物线上,且PQ∥y轴,
∴点P的坐标为(a,1 2 a2+a-4),
∴PQ=-a-(1 2 a2+a-4)=-1 2 a2-2a+4,
又∵OB=0-(-4)=4,
以点P,Q,B,O为顶点的四边形是平行四边形,
∴|PQ|=OB,
即|-1 2 a2-2a+4|=4,
①-1 2 a2-2a+4=4时,整理得,a2+4a=0,
解得a=0(舍去)或a=-4,
-1 2 a2-2a+4=-1 2 ×(-4)2-2×(-4)+4=-8+8+4=4,
所以点Q坐标为(-4,4),
②-1 2 a2-2a+4=-4时,整理得,a2+4a-16=0,
解得x=-2±2 5 ,
所以点Q的坐标为(-2+2 5 ,2-2 5 )或(-2-2 5 ,2+2 5 ),
综上所述,Q坐标为(-4,4)或(-2+2 5 ,2-2 5 )或(-2-2 5 ,2+2 5 )时,使点P,Q,B,O为顶点的四边形是平行四边形.
是不是?
∵抛物线经过A(-4,0),B(0,-4),C(2,0),
∴ 16a-4b+c=0 c=-4 4a+2b+c=0 ,
解得 a=1 2 b=1 c=-4 ,
∴抛物线解析式为y=1 2 x2+x-4;
(2)∵点M的横坐标为m,
∴点M的纵坐标为1 2 m2+m-4,
又∵A(-4,0),
∴AO=0-(-4)=4,
∴S=1 2 ×4×|1 2 m2+m-4|=-(m2+2m-8)=-m2-2m+8,
∵S=-(m2+2m-8)=-(m+1)2+9,点M为第三象限内抛物线上一动点,
∴当m=-1时,S有最大值,最大值为S=9;
故答案为:S关于m的函数关系式为S=-m2-2m+8,当m=-1时,S有最大值9;
(3)∵点Q是直线y=-x上的动点,
∴设点Q的坐标为(a,-a),
∵点P在抛物线上,且PQ∥y轴,
∴点P的坐标为(a,1 2 a2+a-4),
∴PQ=-a-(1 2 a2+a-4)=-1 2 a2-2a+4,
又∵OB=0-(-4)=4,
以点P,Q,B,O为顶点的四边形是平行四边形,
∴|PQ|=OB,
即|-1 2 a2-2a+4|=4,
①-1 2 a2-2a+4=4时,整理得,a2+4a=0,
解得a=0(舍去)或a=-4,
-1 2 a2-2a+4=-1 2 ×(-4)2-2×(-4)+4=-8+8+4=4,
所以点Q坐标为(-4,4),
②-1 2 a2-2a+4=-4时,整理得,a2+4a-16=0,
解得x=-2±2 5 ,
所以点Q的坐标为(-2+2 5 ,2-2 5 )或(-2-2 5 ,2+2 5 ),
综上所述,Q坐标为(-4,4)或(-2+2 5 ,2-2 5 )或(-2-2 5 ,2+2 5 )时,使点P,Q,B,O为顶点的四边形是平行四边形.
是不是?
看了 在平面直角坐标系中,已知抛物...的网友还看了以下:
填空题,用1/4平方米的红旗做了10面小红旗,平均每面小红旗用了这张纸的()/(),每面小红旗用纸( 2020-03-31 …
4700克=千克516厘米=米53公顷=平方千米0.86平方米=平方分米9020千克=吨16平方分 2020-04-07 …
1-2平方分之一)(1-3平方分之一)(1-4平方分之一).(1-2013平方分之一)速度解决, 2020-05-13 …
(1)1\4平方根是(2)121的算术平方根是(3)(-4.3)^2的算术平方根是(4)根号81的 2020-06-06 …
一辆拖拉机耕一块地.第一小时耕了整块地的1/4又1/4平方米,第二小时耕了余下的1/4又1/4平方 2020-07-12 …
初一数学题1.计算:50平方-49平方+48平方-47平方+46平方-45平方+...+2平方-1 2020-07-17 …
1.4平方米=()平方分米3050平房厘米=()平方分米2又4分之1=()立方厘米0.06立方米= 2020-07-18 …
有关α-淀粉酶的特性描述,下列哪种说法不对A.它从直链淀粉分子内部水解α-1,4-糖苷键B.它从支 2020-07-21 …
1-1/22=3/4=(1/2)*(3/2);1-1/32=8/9=(2/3)*(4/3);1-1 2020-07-22 …
观察1-1/2平方=1-1/4=3/4=1/2*3/41-1/3平方=1-1/9=8/9=2/3*4 2020-12-23 …