早教吧作业答案频道 -->其他-->
(1)如图1,把△ABC沿DE折叠,使点A落在点A’处,试探索∠1+∠2与∠A的关系.(不必证明).(2)如图2,BI平分∠ABC,CI平分∠ACB,把△ABC折叠,使点A与点I重合,若∠1+∠2=130°,求∠BIC的
题目详情
(1)如图1,把△ABC沿DE折叠,使点A落在点A’处,试探索∠1+∠2与∠A的关系.(不必证明).
(2)如图2,BI平分∠ABC,CI平分∠ACB,把△ABC折叠,使点A与点I重合,若∠1+∠2=130°,求∠BIC的度数;
(3)如图3,在锐角△ABC中,BF⊥AC于点F,CG⊥AB于点G,BF、CG交于点H,把△ABC折叠使点A和点H重合,试探索∠BHC与∠1+∠2的关系,并证明你的结论.

(2)如图2,BI平分∠ABC,CI平分∠ACB,把△ABC折叠,使点A与点I重合,若∠1+∠2=130°,求∠BIC的度数;
(3)如图3,在锐角△ABC中,BF⊥AC于点F,CG⊥AB于点G,BF、CG交于点H,把△ABC折叠使点A和点H重合,试探索∠BHC与∠1+∠2的关系,并证明你的结论.

▼优质解答
答案和解析
(1)∠1+∠2=2∠A;
(2)由(1)∠1+∠2=2∠A,得2∠A=130°,∴∠A=65°
∵IB平分∠ABC,IC平分∠ACB,
∴∠IBC+∠ICB=
(∠ABC+∠ACB)
=
(180°-∠A)=90°-
∠A,
∴∠BIC=180°-(∠IBC+∠ICB),
=180°-(90°-
∠A)=90°+
×65°=122.5°;
(3)∵BF⊥AC,CG⊥AB,∴∠AFH+∠AGH=90°+90°=180°,
∠FHG+∠A=180°,∴∠BHC=∠FHG=180°-∠A,由(1)知∠1+∠2=2∠A,
∴∠A=
(∠1+∠2),
∴∠BHC=180°-
(∠1+∠2).
(2)由(1)∠1+∠2=2∠A,得2∠A=130°,∴∠A=65°
∵IB平分∠ABC,IC平分∠ACB,
∴∠IBC+∠ICB=
1 |
2 |
=
1 |
2 |
1 |
2 |
∴∠BIC=180°-(∠IBC+∠ICB),
=180°-(90°-
1 |
2 |
1 |
2 |
(3)∵BF⊥AC,CG⊥AB,∴∠AFH+∠AGH=90°+90°=180°,
∠FHG+∠A=180°,∴∠BHC=∠FHG=180°-∠A,由(1)知∠1+∠2=2∠A,
∴∠A=
1 |
2 |
∴∠BHC=180°-
1 |
2 |
看了 (1)如图1,把△ABC沿D...的网友还看了以下:
1.请把(a+b+c+d)(b+c-a-d)(c+a-b-d)(a+b-c-d)+16abcd因式 2020-04-25 …
证明空间中的四点A,B,C,D共面的充分必要条件是它们所对应的位置向量a,b,c,d满足(d,b, 2020-05-13 …
ABCD四种物质﹙或离子﹚中均含有同一种元素,其中A是单质,他们之间存在下图的转化关系,A—C—D 2020-05-16 …
若a+b+c/d=a+b+d/c=a+c+d/b=a+c+d/a=k1)k=?2)a+b+c+d/ 2020-06-12 …
学数据结构遇到的问题,有6个元素a,b,c,d,e,f依次入栈,下列出栈序列中哪个是不可能的?A) 2020-06-28 …
某公路的同一侧有A,B,C三个村庄,要在公路Ox边建一货栈D,向A,B,C三个村庄送农用物资,路线 2020-07-07 …
在△ABC和△A'B'C'中,已知∠C=∠C'=90°,点D,D'分别在边AB,A'B'上,且CD 2020-07-30 …
麻烦老师解答:A、B、C、D都是短周期A、B、C、D都是短周期主族元素,且原子半径D>C>A>B. 2020-07-31 …
EXCEL循环或计算问题。F=A+B+C+D+E。(A.B.C.D.E.F.均要大于零)E=A*10 2020-11-01 …
分解因式(b+c-a-d)^4(b-c)(a-d)+(c+a-b-d)^4(c-a)(b-d)+(a 2021-01-04 …