早教吧作业答案频道 -->其他-->
(1)如图1,把△ABC沿DE折叠,使点A落在点A’处,试探索∠1+∠2与∠A的关系.(不必证明).(2)如图2,BI平分∠ABC,CI平分∠ACB,把△ABC折叠,使点A与点I重合,若∠1+∠2=130°,求∠BIC的
题目详情
(1)如图1,把△ABC沿DE折叠,使点A落在点A’处,试探索∠1+∠2与∠A的关系.(不必证明).
(2)如图2,BI平分∠ABC,CI平分∠ACB,把△ABC折叠,使点A与点I重合,若∠1+∠2=130°,求∠BIC的度数;
(3)如图3,在锐角△ABC中,BF⊥AC于点F,CG⊥AB于点G,BF、CG交于点H,把△ABC折叠使点A和点H重合,试探索∠BHC与∠1+∠2的关系,并证明你的结论.

(2)如图2,BI平分∠ABC,CI平分∠ACB,把△ABC折叠,使点A与点I重合,若∠1+∠2=130°,求∠BIC的度数;
(3)如图3,在锐角△ABC中,BF⊥AC于点F,CG⊥AB于点G,BF、CG交于点H,把△ABC折叠使点A和点H重合,试探索∠BHC与∠1+∠2的关系,并证明你的结论.

▼优质解答
答案和解析
(1)∠1+∠2=2∠A;
(2)由(1)∠1+∠2=2∠A,得2∠A=130°,∴∠A=65°
∵IB平分∠ABC,IC平分∠ACB,
∴∠IBC+∠ICB=
(∠ABC+∠ACB)
=
(180°-∠A)=90°-
∠A,
∴∠BIC=180°-(∠IBC+∠ICB),
=180°-(90°-
∠A)=90°+
×65°=122.5°;
(3)∵BF⊥AC,CG⊥AB,∴∠AFH+∠AGH=90°+90°=180°,
∠FHG+∠A=180°,∴∠BHC=∠FHG=180°-∠A,由(1)知∠1+∠2=2∠A,
∴∠A=
(∠1+∠2),
∴∠BHC=180°-
(∠1+∠2).
(2)由(1)∠1+∠2=2∠A,得2∠A=130°,∴∠A=65°
∵IB平分∠ABC,IC平分∠ACB,
∴∠IBC+∠ICB=
1 |
2 |
=
1 |
2 |
1 |
2 |
∴∠BIC=180°-(∠IBC+∠ICB),
=180°-(90°-
1 |
2 |
1 |
2 |
(3)∵BF⊥AC,CG⊥AB,∴∠AFH+∠AGH=90°+90°=180°,
∠FHG+∠A=180°,∴∠BHC=∠FHG=180°-∠A,由(1)知∠1+∠2=2∠A,
∴∠A=
1 |
2 |
∴∠BHC=180°-
1 |
2 |
看了 (1)如图1,把△ABC沿D...的网友还看了以下:
设f(x0在[a,b]单调连续,(a,b)可导,a=f(a)<f(b)=b求证:存在ξi∈(a,b 2020-05-14 …
线性代数证明题IfAisasquare(nxn)matrixwithA^3=0then(I–A)^ 2020-05-15 …
I a - b I + I ab I =2 的整数对(a,b)的个数有几个?I I这个是绝对值的符 2020-05-16 …
这个程序要求是输出m个数中任取n个数的所有组合,我要抓狂了==#include;#includei 2020-06-28 …
矩阵问题已知A矩阵,AX+I=A^2+X(其中I为单位矩阵),求X(求思路,谢谢)因为AX+I=A 2020-07-14 …
C语言的for相关问题以下是一个代码#include<stdio.h>main(){inta[4] 2020-07-23 …
此一元高次多项式怎么推导f(i)=A(1+i)^(n-1)+(1+i)^(n-2)…(1+i)+1 2020-07-23 …
下证明过程中蕴涵的数学思想是什么s=a+a(1+i)+a(1+i)(1+i)+...+a(1+i)的 2020-11-01 …
这个矩阵问题希望老师能帮助我!已知A矩阵,AX+I=A^2+X(其中I为单位矩阵),求X(求思路,因 2020-11-03 …
在资金时间价值计算时,i和n给定,下列等式中正确的有().A.(F/A,i,n)=[(P/F,i,n 2021-01-14 …