早教吧作业答案频道 -->数学-->
如图,C是线段AB上一点,△ACD和△BCE都是等腰直角三角形,∠ADC=∠CEB=90°(1)连接DE、M、N分别是AC、BC上一点,且∠MDC=∠CDE,∠NEC=∠CED,探索DM、DE、EN之间的数量关系,并说
题目详情
如图,C是线段AB上一点,△ACD和△BCE都是等腰直角三角形,∠ADC=∠CEB=90° |
![]() |
(1)连接DE、M、N分别是AC、BC上一点,且∠MDC=∠CDE,∠NEC=∠CED,探索DM、DE、EN之间的数量关系,并说明理由. (2)延长AD、BE交于F点,连接DE,CG⊥DE于G点,连接CF,CF与DE相交于O点,OC=OE,延长GC到H点,使得CH=CF,探索BF、BH的关系,并说明理由. |
▼优质解答
答案和解析
(1)DM+EN=DE,理由是: ∵等腰直角△ADC和△BEC, ∴∠DCA=45°,∠BCE=45°, ∴∠DCE=180°﹣45°﹣45°=90°, ∴∠CDE+∠CED=180°﹣90°, ∵∠MDC=∠CDE,∠NEC=∠CED, ∴∠MDC+∠CDE+∠DEC+∠NEC=2×90°=180°, ∴DM∥EN, 取DE的中点Q,连接CQ, ∵∠DCE=90°, ∴CQ=QE=DQ, ∴∠QCE=∠QEC=∠NEC, ∴CQ∥EN,同理CQ∥DM,即DM∥CQ∥EN, ∵Q是DE的中点, ∴MC=CN, ∴CQ= ![]() ∵CQ=QD=QE= ![]() ∴DM+EN=DE; (2)BF=BH,BF⊥BH,理由是: 由(1)证得:∠DCE=90°, ∵∠DCE=90°,CG⊥DE, ∴∠DCG+∠ECG=90°,∠ECG+∠GEC=90°, ∴∠DCG=∠GEC, ∵CO=OE, ∴∠GEC=∠ECO, ∴∠GCD=∠ECO, ∵的三角形△ACD和△BEC, ∴∠DCA=∠ECB=45°, ∴∠GCD+∠DCA=∠OCE+∠ECB,即∠GCA=∠FCB, ∵∠GCA=∠BCH, ∴∠BCH=∠FCB, 在△FBC和△HBC中 ![]() ∴△FBC≌△HBC, ∴BF=BH,∠FBC=∠HBC=45°, ∴∠FBH=45°+45°=90°, ∴FB⊥BH. | ![]() ![]() |
看了 如图,C是线段AB上一点,△...的网友还看了以下:
在△ABC和△DEF中,下列条件中,能根据它判定△ABC≌△DEF的是A、AB=DE,BC=EF, 2020-05-13 …
设栈S的初始状态为空,元素a,b,c,d,e,f依次入栈S,出栈的序列为b,d,f,e,c,a…… 2020-05-17 …
问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的 2020-06-15 …
以等腰三角形ABC的斜边AB为边,作菱形ABDE,使D.E.C三点在同一直线上,求证角CAE=1/ 2020-06-17 …
充分必要性问题a,b,c,d,e,f均为非零实数,不等式ax^2+bx+c>0和dx^2+ex+f 2020-06-27 …
用所给的字母组成一个单词,使句子合理通顺。1:I(b,d,i,e,c,m,l)a 2020-06-30 …
已知△ABC中,AB=AC=5,BC=6(如图所示),将△ABC沿射线BC方向平移m个单位得到△D 2020-07-07 …
如图,在3×3的方格中,A,B,C,D,E,F分别位于格点上,从C,D,E,F四点中任意取一点,与 2020-07-10 …
证明(A+B+C)/(D+E+F)不等于(A/D+B/E+C/F)/3请老师把证明过程写下来谢谢! 2020-07-20 …
深水爆炸形成的气泡的振荡周期为T=p^a×d^b×e^c,式中p为压强,d是水的密度,e是爆炸的总能 2020-11-07 …