早教吧作业答案频道 -->数学-->
在平面直角坐标系中xoy中,已知圆O:x^2+y^2=64,圆O1与圆O2相交,圆心为O1(9,0),且圆O1上的点之间的最大距离为21过定点P(a,b)作动直线l与圆O,圆O1都相交,切直线l被圆O,圆O1截得的弦长分别为d,d1,若
题目详情
在平面直角坐标系中xoy中,已知圆O:x^2+y^2=64,圆O1与圆O2相交,圆心为O1(9,0
),且圆O1上的点之间的最大距离为21
过定点P(a,b)作动直线l与圆O,圆O1都相交,切直线l被圆O,圆O1截得的弦长分别为d,d1,若d与d1的比值总等于同一常数α,求点P的坐标及α的值
),且圆O1上的点之间的最大距离为21
过定点P(a,b)作动直线l与圆O,圆O1都相交,切直线l被圆O,圆O1截得的弦长分别为d,d1,若d与d1的比值总等于同一常数α,求点P的坐标及α的值
▼优质解答
答案和解析
(1)圆O:x2+y2=64,圆O1与圆O相交,圆O1上的点与圆O上的点之间的最大距离为21,
∴圆O1的半径为4,
∵圆心为O1(9,0),
∴圆O1的标准方程为(x-9)2+y2=16;
(2)当直线l的斜率存在时,设方程为y-b=k(x-a),即kx-y-ka+b=0
∴O,O1到直线l的距离分别为h=|ka-b| /√(1+k²),h1=|-9k+ka-b| /√(1+k²)
∴d=2{√[64-(|ka-b|/√〈1+k²〉)²]},d1=2{√[16-(|-9k+ka-b|/√〈1+k²〉)²]}
∵d与d1的比值总等于同一常数λ,
∴ 64-(|ka-b|/√〈1+k²〉)²=λ²(|-9k+ka-b|/√〈1+k²〉)²
∴k²[64-a²-16λ²+λ²(a-9)²]+2bk[a-λ²(a-9)]+64-b²-λ²(16-b²)=0
由题意,上式对任意实数k恒成立
∴64-a²-16λ²+λ²(a-9)²=0,2bk[a-λ²(a-9)]=0,64-b²-λ²(16-b²)=0同时成立
①如果b=0,代入64-b²-λ²(16-b²)=0,则64-16λ²=0,∴λ=2(舍去负值),从而a=6或18;
∴λ=2,P(6,0),P(18,0)
②如果a-λ²(a-9)=0,显然a=9不满足,从而λ²= a/(a-9)
代入64-a²-16λ²+λ²(a-9)²=0得3a²-43a+192=0,△=432-4×3×192=-455<0,故方程无解,舍去;
综上,满足题意的λ=2,点P有两个,坐标分别为(6,0),(18,0).
累死了.采纳吧………………
∴圆O1的半径为4,
∵圆心为O1(9,0),
∴圆O1的标准方程为(x-9)2+y2=16;
(2)当直线l的斜率存在时,设方程为y-b=k(x-a),即kx-y-ka+b=0
∴O,O1到直线l的距离分别为h=|ka-b| /√(1+k²),h1=|-9k+ka-b| /√(1+k²)
∴d=2{√[64-(|ka-b|/√〈1+k²〉)²]},d1=2{√[16-(|-9k+ka-b|/√〈1+k²〉)²]}
∵d与d1的比值总等于同一常数λ,
∴ 64-(|ka-b|/√〈1+k²〉)²=λ²(|-9k+ka-b|/√〈1+k²〉)²
∴k²[64-a²-16λ²+λ²(a-9)²]+2bk[a-λ²(a-9)]+64-b²-λ²(16-b²)=0
由题意,上式对任意实数k恒成立
∴64-a²-16λ²+λ²(a-9)²=0,2bk[a-λ²(a-9)]=0,64-b²-λ²(16-b²)=0同时成立
①如果b=0,代入64-b²-λ²(16-b²)=0,则64-16λ²=0,∴λ=2(舍去负值),从而a=6或18;
∴λ=2,P(6,0),P(18,0)
②如果a-λ²(a-9)=0,显然a=9不满足,从而λ²= a/(a-9)
代入64-a²-16λ²+λ²(a-9)²=0得3a²-43a+192=0,△=432-4×3×192=-455<0,故方程无解,舍去;
综上,满足题意的λ=2,点P有两个,坐标分别为(6,0),(18,0).
累死了.采纳吧………………
看了 在平面直角坐标系中xoy中,...的网友还看了以下:
数学14455555圆A:(x+2)^2+y^2=1与点A(-2,0),B(2,0),分别说明满足 2020-05-12 …
已知,,圆,一动圆在轴右侧与轴相切,同时与圆相外切,此动圆的圆心轨迹为曲线C,曲线E是以,为焦点的 2020-05-15 …
椭圆的长轴长为4,焦距为2,F1、F2分别为椭圆的左、右焦点,直线过点且垂直于椭圆的长轴,动直线垂 2020-05-15 …
求关于曲线动圆的圆心轨迹方程及其他问题已知动圆G过F《二分之三,0》,且直线L:X=负二分之三相切 2020-06-04 …
求关于曲线动圆的圆心轨迹方程及其他问题已知动圆G过F《二分之三,0》,且直线L:X=负二分之三相切 2020-07-21 …
已知定点F(2,0)和定直线,动圆P过定点F与定直线相切,记动圆圆心P的轨迹为曲线C(1)求曲线C 2020-07-22 …
已知圆M:x2+(y-2)2=1,直线l:y=-1,动圆P与圆M相外切,且与直线l相切.设动圆圆心 2020-07-25 …
已知动圆P过点N(2,0)并且与圆M:(X+2)^2+Y^2=4相外切,动圆圆心P的轨迹为W,过点 2020-07-26 …
已知定圆A:(x+1)^2+y^2=16,圆心为A,动圆M过点B(1,0)且和圆A相切,动圆的圆心 2020-07-26 …
已知动直线l:(m+3)x-(m+2)y+m=0,圆C:(x-3)^2+(y-4)^2=9求证:无论 2021-01-12 …