早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知f(x)是奇函数,且有f(x+1)=-1f(x),当x∈(0,12)时,f(x)=8x,(1)求f(-13),f(23),f(53)的值;(2)当12<x<1时,求f(x)的解析式;并求证T=2为函数f(x)的一个周期;(3

题目详情
已知f(x)是奇函数,且有f(x+1)=-
1
f(x)
,当x∈(0,
1
2
)时,f(x)=8x
(1)求f(-
1
3
),f(
2
3
),f(
5
3
)的值;
(2)当
1
2
<x<1时,求f(x)的解析式;并求证T=2为函数f(x)的一个周期;
(3)是否存在k∈N*,使2k+
1
2
<x<2k+1时,不等式log8f(x)>x2-(k+3)x-k+2有解?若存在,求出k的值及对应的不等式的解;若不存在,请说明理由.
1
f(x)
,当x∈(0,
1
2
)时,f(x)=8x
(1)求f(-
1
3
),f(
2
3
),f(
5
3
)的值;
(2)当
1
2
<x<1时,求f(x)的解析式;并求证T=2为函数f(x)的一个周期;
(3)是否存在k∈N*,使2k+
1
2
<x<2k+1时,不等式log8f(x)>x2-(k+3)x-k+2有解?若存在,求出k的值及对应的不等式的解;若不存在,请说明理由.
1
f(x)
11f(x)f(x)
1
2
)时,f(x)=8x
(1)求f(-
1
3
),f(
2
3
),f(
5
3
)的值;
(2)当
1
2
<x<1时,求f(x)的解析式;并求证T=2为函数f(x)的一个周期;
(3)是否存在k∈N*,使2k+
1
2
<x<2k+1时,不等式log8f(x)>x2-(k+3)x-k+2有解?若存在,求出k的值及对应的不等式的解;若不存在,请说明理由.
1
2
1122x
1
3
),f(
2
3
),f(
5
3
)的值;
(2)当
1
2
<x<1时,求f(x)的解析式;并求证T=2为函数f(x)的一个周期;
(3)是否存在k∈N*,使2k+
1
2
<x<2k+1时,不等式log8f(x)>x2-(k+3)x-k+2有解?若存在,求出k的值及对应的不等式的解;若不存在,请说明理由.
1
3
1133
2
3
),f(
5
3
)的值;
(2)当
1
2
<x<1时,求f(x)的解析式;并求证T=2为函数f(x)的一个周期;
(3)是否存在k∈N*,使2k+
1
2
<x<2k+1时,不等式log8f(x)>x2-(k+3)x-k+2有解?若存在,求出k的值及对应的不等式的解;若不存在,请说明理由.
2
3
2233
5
3
)的值;
(2)当
1
2
<x<1时,求f(x)的解析式;并求证T=2为函数f(x)的一个周期;
(3)是否存在k∈N*,使2k+
1
2
<x<2k+1时,不等式log8f(x)>x2-(k+3)x-k+2有解?若存在,求出k的值及对应的不等式的解;若不存在,请说明理由.
5
3
5533
1
2
<x<1时,求f(x)的解析式;并求证T=2为函数f(x)的一个周期;
(3)是否存在k∈N*,使2k+
1
2
<x<2k+1时,不等式log8f(x)>x2-(k+3)x-k+2有解?若存在,求出k的值及对应的不等式的解;若不存在,请说明理由.
1
2
1122
*
1
2
<x<2k+1时,不等式log8f(x)>x2-(k+3)x-k+2有解?若存在,求出k的值及对应的不等式的解;若不存在,请说明理由.
1
2
112282
▼优质解答
答案和解析
(1)∵函数f(x)是奇函数,∴f(-x)=-f(x).∵f(x+1)=-1f(x),当x∈(0,12)时,f(x)=8x,∴f(-13)=-f(13)=-8 13=-2,f(23)=f(−13+1)=-1f(−13)=1f(13)=1813=12,f(53)=f(1+23)=−1f(23...