早教吧 育儿知识 作业答案 考试题库 百科 知识分享

求函数y=sin^2xcosx(0≤x≤π/2)的最大值

题目详情
求函数y=sin^2xcosx(0≤x≤π/2)的最大值
▼优质解答
答案和解析
y=(1-cos²x)cosx
=-cos³x+cosx
0<=x<=π/2
0<=cosx<=1
令a=cosx
y=-a³+a
y'=-3a²+1=0
a=±√3/3
0<=a<=1
所以a=√3/3
y'开口向下
所以
a>√3/3,y'<0,减函数
00,增函数
所以a=√3/3是最大值点
所以y最大=-(√3/3)³+√3/3=2√3/3