早教吧作业答案频道 -->数学-->
(2014•山西)课程学习:正方形折纸中的数学.动手操作:如图1,四边形ABCD是一张正方形纸片,先将正方形ABCD对折,使BC与AD重合,折痕为EF,把这个正方形展平,然后沿直线CG折叠,使B点
题目详情
(2014•山西)课程学习:正方形折纸中的数学.
动手操作:如图1,四边形ABCD是一张正方形纸片,先将正方形ABCD对折,使BC与AD重合,折痕为EF,把这个正方形展平,然后沿直线CG折叠,使B点落在EF上,对应点为B′.
数学思考:(1)求∠CB′F的度数;(2)如图2,在图1的基础上,连接AB′,试判断∠B′AE与∠GCB′的大小关系,并说明理由;
解决问题:
(3)如图3,按以下步骤进行操作:
第一步:先将正方形ABCD对折,使BC与AD重合,折痕为EF,把这个正方形展平,然后继续对折,使AB与DC重合,折痕为MN,再把这个正方形展平,设EF和MN相交于点O;
第二步:沿直线CG折叠,使B点落在EF上,对应点为B′,再沿直线AH折叠,使D点落在EF上,对应点为D′;
第三步:设CG、AH分别与MN相交于点P、Q,连接B′P、PD′、D′Q、QB′,试判断四边形B′PD′Q的形状,并证明你的结论.

动手操作:如图1,四边形ABCD是一张正方形纸片,先将正方形ABCD对折,使BC与AD重合,折痕为EF,把这个正方形展平,然后沿直线CG折叠,使B点落在EF上,对应点为B′.
数学思考:(1)求∠CB′F的度数;(2)如图2,在图1的基础上,连接AB′,试判断∠B′AE与∠GCB′的大小关系,并说明理由;
解决问题:
(3)如图3,按以下步骤进行操作:
第一步:先将正方形ABCD对折,使BC与AD重合,折痕为EF,把这个正方形展平,然后继续对折,使AB与DC重合,折痕为MN,再把这个正方形展平,设EF和MN相交于点O;
第二步:沿直线CG折叠,使B点落在EF上,对应点为B′,再沿直线AH折叠,使D点落在EF上,对应点为D′;
第三步:设CG、AH分别与MN相交于点P、Q,连接B′P、PD′、D′Q、QB′,试判断四边形B′PD′Q的形状,并证明你的结论.

▼优质解答
答案和解析
(1)如图1,由对折可知,∠EFC=90°,CF=
CD,

∵四边形ABCD是正方形,
∴CD=CB,
∴CF=
BC,
∵CB′=CB,
∴CF=
CB′
∴在RT△B′FC中,sin∠CB′F=
=
,
∴∠CB′F=30°,
(2)如图2,连接BB′交CG于点K,由对折可知,EF垂直平分AB,

∴B′A=B′B,
∠B′AE=∠B′BE,
∵四边形ABCD是正方形,
∴∠ABC=90°,
∴∠B′BE+∠KBC=90°,
由折叠知,∠BKC=90°,
∴∠KBC+∠GCB=90°,
∴∠B′BE=∠GCB,
又由折叠知,∠GCB=∠GCB′,
∴∠B′AE=∠GCB′,
(3)四边形B′PD′Q为正方形,
证明:如图3,连接AB′

由(2)可知∠B′AE=∠GCB′,由折叠可知,∠GCB′=∠PCN,
∴∠B′AE=∠PCN,
由对折知∠AEB′=∠CNP=90°,AE=
AB,CN=
BC,
又∵四边形ABCD是正方形,
∴AB=BC,
∴AE=CN,
在△AEB′和△CNP
∴△AEB′≌△CNP(ASA)
∴EB′=NP,
同理可得,EB′=MQ,
由对称性可知,EB′=FD′,
∴EB′=NP=FD′=MQ,
由两次对折可得,OE=ON=OF=OM,
∴OB′=OP=0D′=OQ,
∴四边形B′PD′Q为矩形,
由对折知,MN⊥EF,于点O,
∴PQ⊥B′D′于点0,
∴四边形B′PD′Q为正方形,
1 |
2 |

∵四边形ABCD是正方形,
∴CD=CB,
∴CF=
1 |
2 |
∵CB′=CB,
∴CF=
1 |
2 |
∴在RT△B′FC中,sin∠CB′F=
CF |
CB′ |
1 |
2 |
∴∠CB′F=30°,
(2)如图2,连接BB′交CG于点K,由对折可知,EF垂直平分AB,

∴B′A=B′B,
∠B′AE=∠B′BE,
∵四边形ABCD是正方形,
∴∠ABC=90°,
∴∠B′BE+∠KBC=90°,
由折叠知,∠BKC=90°,
∴∠KBC+∠GCB=90°,
∴∠B′BE=∠GCB,
又由折叠知,∠GCB=∠GCB′,
∴∠B′AE=∠GCB′,
(3)四边形B′PD′Q为正方形,
证明:如图3,连接AB′

由(2)可知∠B′AE=∠GCB′,由折叠可知,∠GCB′=∠PCN,
∴∠B′AE=∠PCN,
由对折知∠AEB′=∠CNP=90°,AE=
1 |
2 |
1 |
2 |
又∵四边形ABCD是正方形,
∴AB=BC,
∴AE=CN,
在△AEB′和△CNP
|
∴△AEB′≌△CNP(ASA)
∴EB′=NP,
同理可得,EB′=MQ,
由对称性可知,EB′=FD′,
∴EB′=NP=FD′=MQ,
由两次对折可得,OE=ON=OF=OM,
∴OB′=OP=0D′=OQ,
∴四边形B′PD′Q为矩形,
由对折知,MN⊥EF,于点O,
∴PQ⊥B′D′于点0,
∴四边形B′PD′Q为正方形,
看了 (2014•山西)课程学习:...的网友还看了以下:
孙中山先生说:“我志所向,一往无前,愈挫愈奋,再接再厉。”这说明[]A.挫折使人前进的步伐受阻B. 2020-04-06 …
将一张矩形纸片ABCD先折出一条对角线AC,再将A与C重合折出折痕EF,最后分别沿AE、CF折叠. 2020-04-09 …
将矩形ABCD折叠,使点A和点C重合,折痕为EF,EF分别交AD,BC于E,F.(1)求证四边形A 2020-05-15 …
脊柱骨折最常见的形态是A.裂缝骨折B.楔形骨折C.压缩骨折D.螺旋形骨折E.凹陷骨折 2020-06-07 …
初二勾股定理有一张直角三角形纸片,两直角边AC=12cm,BC=16cm,将三角形ABC折叠,使点 2020-06-10 …
将长方形纸片向右上方翻折,使得点A和点C重合,画出折痕以及翻折后的图形,折痕与长方形的边CD、AB 2020-07-04 …
直角三角形ABC中,BC=2,AC=6,依下列的步骤抄作折纸.(A)将A,C两点重合(B)DE为折痕 2020-11-06 …
直角三角形ABC中,BC=2,AC=6,依下列的步骤抄作折纸.(A)将A,C两点重合(B)DE为折痕 2020-12-02 …
如图,矩形ABCD中AB=4,BC=8.1、把矩形ABCD折叠,使点C与点A重合,得到折痕EF(其中 2020-12-05 …
如图所示的现象中,属于光的色散现象的是()A.玻璃杯中的铜勺好像在水面处折断了B.雨后的空中出现美丽 2020-12-25 …