早教吧作业答案频道 -->数学-->
设f:x->y,g:y->x,设g.f为x上恒等的函数,证明:f是单射,g是满射
题目详情
设f:x->y,g:y->x,设g.f为x上恒等的函数,证明:f是单射,g是满射
▼优质解答
答案和解析
用反证法证明.
先证f是单射.(回顾单射的定义:X的不同点的像一定不同).用反证法.假设f不是单射,即有两个X上的不同点的像相同,即存在x1,x2两个不同点,它们都被f映成y.可是g再把y映回来的时候,只能映为x1或者x2或者其他一个什么点,即g.f不可能是恒等函数了:具体来说,分类讨论,(1)假如g.f(x1)=x1,即g(y)=x1,那么因为g是映射,所以g(y)不可能是x2,即g.f(x2)不是x2,说明g.f不是恒等函数 (2)假如g.f(x1)不等于x1,那g.f就地就不是恒等函数了.
2.再证g是满射.(回顾满射的定义:被映到的集合中的每个元素都有原像,即被映到的集合被映“满”了.)具体到此题中,是想证明对X当中的任何一个元素x,都存在y使得g(y)=x.用反证法证明.假设g不是满射,即X当中存在这样一个元素x0,Y中没有一个元素能被g映成x0.则矛盾立即得出:这个x0不可能经过g.f的复合映射之后变回自己,因为到了g这一层映射之后,x0根本不是像点.这样g.f(x0)不等于x0,即g.f不是恒等函数.
先证f是单射.(回顾单射的定义:X的不同点的像一定不同).用反证法.假设f不是单射,即有两个X上的不同点的像相同,即存在x1,x2两个不同点,它们都被f映成y.可是g再把y映回来的时候,只能映为x1或者x2或者其他一个什么点,即g.f不可能是恒等函数了:具体来说,分类讨论,(1)假如g.f(x1)=x1,即g(y)=x1,那么因为g是映射,所以g(y)不可能是x2,即g.f(x2)不是x2,说明g.f不是恒等函数 (2)假如g.f(x1)不等于x1,那g.f就地就不是恒等函数了.
2.再证g是满射.(回顾满射的定义:被映到的集合中的每个元素都有原像,即被映到的集合被映“满”了.)具体到此题中,是想证明对X当中的任何一个元素x,都存在y使得g(y)=x.用反证法证明.假设g不是满射,即X当中存在这样一个元素x0,Y中没有一个元素能被g映成x0.则矛盾立即得出:这个x0不可能经过g.f的复合映射之后变回自己,因为到了g这一层映射之后,x0根本不是像点.这样g.f(x0)不等于x0,即g.f不是恒等函数.
看了 设f:x->y,g:y->x...的网友还看了以下:
设集合A={1,2},则从A到A的映射f满足f(f(x))=f(x)的映射个数是 2020-04-05 …
设集合M={-1,0},N={1,2,3,4,5}映射f:M→N.满足条件对每个x属于M,都有x+ 2020-05-15 …
1.若不等式|x-4|+|3-x|<a的解集为空集,则a的取值范围是2.设M={a,b,c},N= 2020-06-03 …
中学数学题——关于集合与映射的.(8.25)设集合M={-1,0,1},集合N={5,6,7,8, 2020-06-06 …
温度有两种表达方式,一种是摄氏度,另一种是华氏温度,如果以°C设为x,°F设为y,y与x的函数关系 2020-06-10 …
设f:A→B是A到B的一个映射,其中A=B={(x,y)∣x,y∈R},f:(x,y)→(x-y, 2020-06-18 …
点集拓扑问题设X,Y是拓扑空间,f:X→Y是常值映射,即对任意x∈X,f(x)=y0,(y0是Y中 2020-07-03 …
设A={1,2,3,4,5,6},则满足条件f(f(x))=f(x)的映射f:A→A的个数为()设 2020-07-30 …
一道关于映射的题设集合X={-1,0,1},Y={-2,-1,0,1,2},从X到Y的映射f满足条 2020-07-30 …
为什么最后是2×5×5=50?设集合M={-1,0,1},N={2,3,4,5,6},映射f:M→ 2020-07-30 …