早教吧作业答案频道 -->数学-->
已知f(x)是定义在R上的奇函数,且f(x+2)=-f(x),当0≤x≤1时,f(x)=x.(1)求f(π)的值;(2)当-4≤x≤4时,求f(x)的图象与x轴围成图形的面积.(3)求函数f(x)的解析式及
题目详情
已知f(x)是定义在R上的奇函数,且f(x+2)=-f (x),当0≤x≤1时,f(x)=x.
(1)求f(π)的值;
(2)当-4≤x≤4时,求f(x)的图象与x轴围成图形的面积.
(3)求函数f(x)的解析式及单调区间.(不必写推导过程)
(1)求f(π)的值;
(2)当-4≤x≤4时,求f(x)的图象与x轴围成图形的面积.
(3)求函数f(x)的解析式及单调区间.(不必写推导过程)
▼优质解答
答案和解析
(1)∵f(x+2)=-f (x),
∴f(x+4)=-f(x+2)=f(x),
∴函数f(x)是周期为4的函数.
∴f(π)=f(π-4),
∵f(x)是定义在R上的奇函数,
∴f(π-4)=-f(4-π),
∴f(π)=-f(4-π).
当0≤x≤1时,f(x)=x.
∴f(π)=-f(4-π)=-(4-π)=π-4.
(2)设-1≤x≤0,则0≤-x≤1.
∵当0≤x≤1时,f(x)=x,f(x)是定义在R上的奇函数,
∴f(x)=-f(-x)=-(-x)=x.
令1≤x≤3,
则-1≤x-2≤1,
又f(x+2)=-f (x),
∴f(x)=-f(x-2)=-(x-2)=-x+2.
再利用函数的周期性同理可得:3≤x≤4,f(x)=x-4.
-4≤x≤-3,f(x)=x+4;
-3≤x≤-1,f(x)=-x-2.
∴f(x)=
函数f(x)的图象如图所示,
与x轴围成图形的面积S=
×2×1×4=4.
(3)由(2)可得:
f(x)=
.

∴f(x+4)=-f(x+2)=f(x),
∴函数f(x)是周期为4的函数.
∴f(π)=f(π-4),
∵f(x)是定义在R上的奇函数,
∴f(π-4)=-f(4-π),
∴f(π)=-f(4-π).
当0≤x≤1时,f(x)=x.
∴f(π)=-f(4-π)=-(4-π)=π-4.
(2)设-1≤x≤0,则0≤-x≤1.
∵当0≤x≤1时,f(x)=x,f(x)是定义在R上的奇函数,
∴f(x)=-f(-x)=-(-x)=x.
令1≤x≤3,
则-1≤x-2≤1,
又f(x+2)=-f (x),
∴f(x)=-f(x-2)=-(x-2)=-x+2.
再利用函数的周期性同理可得:3≤x≤4,f(x)=x-4.
-4≤x≤-3,f(x)=x+4;
-3≤x≤-1,f(x)=-x-2.
∴f(x)=
|
函数f(x)的图象如图所示,
与x轴围成图形的面积S=
1 |
2 |
(3)由(2)可得:
f(x)=
|
看了 已知f(x)是定义在R上的奇...的网友还看了以下:
已知y是关于x的一次函数,且当x=3时,y=-2;当x=2时,y=-3.(1)求这个一次函数的表达式 2020-03-30 …
(1)当且仅当m为何值时,经过两点A(-m,6)、B(1,3m)的直线的斜率是12?(2)当且仅当 2020-04-08 …
如何证明均值定理?均值定理:已知x,y∈R+,x+y=S,x·y=P(1)如果P是定值,那么当且仅 2020-06-16 …
在平面直角坐标系xoy中,抛物线y=ax2bxc过点(2,2),且当x=0时y取得最小值1在平面直 2020-06-17 …
椭圆(a>b>0),、、、分别为椭圆C的长轴与短轴的端点.(1)设点,若当且仅当椭圆C上的点P在椭 2020-07-31 …
已知fx是定义在实数集R上的奇函数,且当x大于0时fx=x^2-4x+31,求f[f(-已知fx是定 2020-11-07 …
急请帮我解答一道数学题谢谢,在线等答案已知y与X成正比例且,当x=8时y=12(1)求y5x的函数关 2020-11-13 …
如果奇函数y=f(x)在区间[3,7]上是增函数,且最小值为5,那么f(x)在区间[-7,-3]上是 2020-12-08 …
已知函数f(x)是定义在R上的奇函数,且当x≥0时,fx)=x2-2x求f(0及f(1)的值求已知函 2020-12-27 …
已知y﹣3与4x﹣2成正比例,且当x=1时,y=5,(1)求y与x的函数关系式;(2)求当x=﹣2时 2021-01-11 …