早教吧 育儿知识 作业答案 考试题库 百科 知识分享

某厂有一批长为18m的条形钢板,可以割成1.8m和1.5m长的零件,它们的加工费分别为每个1元和0.6元,售价分别为20元和15元,总加工费要求不超过8元,问如何下料能获得最大利润.

题目详情
某厂有一批长为18m的条形钢板,可以割成1.8m和1.5m长的零件,它们的加工费分别为每个1元和0.6元,售价分别为20元和15元,总加工费要求不超过8元,问如何下料能获得最大利润.
▼优质解答
答案和解析
作业搜 设割成的1.8m和1.5m长的零件分别为x个、y个,利润为z元,
则z=20x+15y-(x+0.6y)即z=19x+14.4y且
1.8x+1.5y≤18
x+0.6y≤8
x,y∈N

作出不等式组表示的平面区域如图:
1.8x+1.5y=18
x+0.6y=8
,解得:M(
20
7
60
7
),
∵x、y为自然数,在可行区域内找出与M最近的点为(3,8),此时z=19×3+14.4×8=172.2(元),
又可行域的另一顶点是(0,12),过(0,12)的直线使z=19×0+14.4×12=172.8(元),
过顶点(8,0)的直线使z=19×8+14.4×0=152(元),
M(7(20),7(60))附近的点(1,10)、(2,9),
直线z=19x+14.4y过点(1,10)时,z=163;过点(2,9)时z=167.6,
∴当x=0,y=12时,z=172.8元为最大值;
答:只要截1.5m长的零件12个,就能获得最大利润.
看了 某厂有一批长为18m的条形钢...的网友还看了以下: