早教吧作业答案频道 -->其他-->
设首项为a1的正项数列{an}的前n项和为Sn,q为非零常数,已知对任意正整数n,m,Sn+m=Sm+qmSn总成立.(Ⅰ)求证:数列{an}是等比数列;(Ⅱ)若不等的正整数m,k,h成等差数列,试比较amm•ahh
题目详情
设首项为a1的正项数列{an}的前n项和为Sn,q为非零常数,已知对任意正整数n,m,Sn+m=Sm+qmSn总成立.
(Ⅰ)求证:数列{an}是等比数列;
(Ⅱ)若不等的正整数m,k,h成等差数列,试比较amm•ahh与ak2k的大小;
(Ⅲ)若不等的正整数m,k,h成等比数列,试比较
•
与
的大小.
(Ⅰ)求证:数列{an}是等比数列;
(Ⅱ)若不等的正整数m,k,h成等差数列,试比较amm•ahh与ak2k的大小;
(Ⅲ)若不等的正整数m,k,h成等比数列,试比较
a |
m |
a |
h |
a |
k |
▼优质解答
答案和解析
(Ⅰ)证:因为对任意正整数n,m,Sn+m=Sm+qmSn总成立,
令n=m=1,得S2=S1+qS1,则a2=qa1
令m=1,得Sn+1=S1+qSn(1),从而Sn+2=S1+qSn+1(2),
(2)-(1)得an+2=qan+1,(n≥1)
综上得an+1=qan(n≥1),所以数列{an}是等比数列
(Ⅱ)正整数m,k,h成等差数列,
则m+h=2k,
所以m2+h2>
(m+h)2=2k2,
则
•
=
qm2−m
qh2−h=
qm2+h2−m−h
①当q=1时,amm•ahh=a12k=ak2k
②当q>1时,
•
=
qm2+h2−m−h>
q2k2−2k=(a1qk−1)2k=
③当0<q<1时,
•
=
qm2+h2−m−h<
q2k2−2k=(a1qk−1)2k=
(Ⅲ)正整数m,k,h成等比数列,则m•h=k2,则
+
>2
令n=m=1,得S2=S1+qS1,则a2=qa1
令m=1,得Sn+1=S1+qSn(1),从而Sn+2=S1+qSn+1(2),
(2)-(1)得an+2=qan+1,(n≥1)
综上得an+1=qan(n≥1),所以数列{an}是等比数列
(Ⅱ)正整数m,k,h成等差数列,
则m+h=2k,
所以m2+h2>
1 |
2 |
则
a | m m |
a | h h |
a | m 1 |
a | h 1 |
a | 2k 1 |
①当q=1时,amm•ahh=a12k=ak2k
②当q>1时,
a | m m |
a | h h |
a | 2k 1 |
a | 2k 1 |
a | 2k k |
③当0<q<1时,
a | m m |
a | h h |
a | 2k 1 |
a | 2k 1 |
a | 2k k |
(Ⅲ)正整数m,k,h成等比数列,则m•h=k2,则
1 |
m |
1 |
h |
作业帮用户
2017-10-01
|
看了 设首项为a1的正项数列{an...的网友还看了以下:
列车在平直轨道上行驶,在50s 没的速度由36km/h增加到54km/h,列车的质量1000t,若 2020-05-16 …
过m边形一顶点有7条对角线,n边形没对角线,k边形有k条对角线,正h边形内角和外角和相等,h*(m 2020-05-20 …
求VBA的计算公式ActiveCell.FormulaR1C1="=COUNTA("&CStr(A 2020-05-21 …
上海到南京的列车速度V1=180KM|H列车通过道口的速度V2=36KM|H停车线至拦道木距离X0 2020-06-23 …
若过m边形的一个顶点有7条对角线,n边形没有对角线,k边形有k条对角线,正h边形的内角和与外角和相 2020-06-27 …
在线求指导:下列划线字的读音,正下列划线字的读音,正确的一组是[]A.愆期(qiān)颔首(h 2020-07-15 …
甲.乙两车站相距60km/h,列车以50km/h的速度由甲站开往乙站,当走完一半路程时,司机发现这样 2020-11-16 …
甲、乙两地间铁路长2400km,经技术改造,列车实现提速,提速后比提速前速度增加20km/h,列车从 2020-12-06 …
若过m边形的一个顶点有7条对角线,n边形没有对角线,k边形有k条对角线,正h边形的内角和与外角和相等 2020-12-25 …
若过m边形的一个顶点有7条对角线,n边形没有对角线,k边形有k条对角线,正h边形的内角和与外角和相等 2021-02-21 …