早教吧作业答案频道 -->数学-->
如图,已知正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45°.求证:(1)EF=BE+DF;(2)SABCDS△EAF=2ABEF.
题目详情
如图,已知正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45°.
求证:(1)EF=BE+DF;
(2)
=
.

求证:(1)EF=BE+DF;
(2)
SABCD |
S△EAF |
2AB |
EF |

▼优质解答
答案和解析
证明:(1)延长CB到G,使GB=DF,连接AG(如图)
∵AB=AD,∠ABG=∠D=90°,GB=DF,
∴△ABG≌△ADF(SAS),
∴∠3=∠2,AG=AF,
∵∠BAD=90°,∠EAF=45°,
∴∠1+∠2=45°,
∴∠GAE=∠1+∠3=45°=∠EAF,
∵AE=AE,∠GAE=∠EAF,AG=AF,
∴△AGE≌△AFE(SAS),
∴GB+BE=EF,
∴DF+BE=EF;
(2)∵△AEF≌△AGE,
∴S△AEF=S△AGE,
∴S△AEF=
GE×AB=
EF×AB,
又SABCD=AB2,
∴
=
=
.

∵AB=AD,∠ABG=∠D=90°,GB=DF,
∴△ABG≌△ADF(SAS),
∴∠3=∠2,AG=AF,
∵∠BAD=90°,∠EAF=45°,
∴∠1+∠2=45°,
∴∠GAE=∠1+∠3=45°=∠EAF,
∵AE=AE,∠GAE=∠EAF,AG=AF,
∴△AGE≌△AFE(SAS),
∴GB+BE=EF,
∴DF+BE=EF;
(2)∵△AEF≌△AGE,
∴S△AEF=S△AGE,
∴S△AEF=
1 |
2 |
1 |
2 |
又SABCD=AB2,
∴
SABCD |
S△AEF |
AB2 | ||
|
2AB |
EF |
看了 如图,已知正方形ABCD中,...的网友还看了以下:
已知点P在曲线y=4/(e^x+10)上,a为曲线在点P处的切线的倾斜角,则a的取值范围是()A[ 2020-04-11 …
E^2*R/(R+r)^2=E^2/(R-r)^2/R+4r(某公式推导最后两行)本人只得:=E^ 2020-06-07 …
main(){unionEXAMPLE{struct{intx,y;}in;inta,b;}e;e 2020-06-12 …
设函数f(x)=alnx-bx^2(x>0)(1)若函数f(x)在x=1处与直线y=-1/2相切, 2020-07-31 …
已知函数f(x)=e^x-ax^2-bx-1,其中a,b属于R,e=2.71828...为自然对数 2020-08-02 …
如图1,在等腰梯形ABCD中,AD平行BC,E是AB的中点,过点E作EF平行BC交CD于点F.AB 2020-08-02 …
∫xe^x/(√e^x-2)dx这个我要t=(√e^x-2)最后得到∫(t^2+2)ln(t^2+ 2020-08-03 …
重要极限lim[x+1/(x-1)]^(x-2)最后得出e^2/(x-1)*2到这里我会,最后怎么变 2020-11-11 …
2-1设文法G[E]的产生式集为:EàE+T|E-T|TTàT*F|T/F|FFà(E)|i(1)给 2020-11-26 …
直线y=-√3x+4√3与x轴相交于点A与直线y=√3x相交于点P动点E从原点O出发每秒1单位的速度 2020-12-02 …