早教吧作业答案频道 -->数学-->
利用范德蒙行列式求解.怎么求.a^n(a-1)^n…(a-n)^na^(n-1)(a-1)^(n-1)…(a-n)^(n-1)......11…1
题目详情
利用范德蒙行列式求解.怎么求.
a^n (a-1)^n … (a-n)^n
a^(n-1) (a-1)^(n-1)… (a-n)^(n-1)
...
...
1 1 … 1
a^n (a-1)^n … (a-n)^n
a^(n-1) (a-1)^(n-1)… (a-n)^(n-1)
...
...
1 1 … 1
▼优质解答
答案和解析
将第1行依次与第2,3,...,n行交换,一直交换到第n行
a^(n-1) (a-1)^(n-1) … (a-n)^(n-1)
...
...
1 1 … 1
a^n (a-1)^n … (a-n)^n
将第1行依次与第2,3,...,n-1行交换,一直交换到第n-1行
a^(n-2) (a-1)^(n-2) … (a-n)^(n-2)
...
...
1 1 … 1
a^(n-1) (a-1)^(n-1) … (a-n)^(n-1)
a^n (a-1)^n … (a-n)^n
如此类似交换,一直交换为:
1 1 … 1
a (a-1) … (a-n)
...
...
a^(n-1) (a-1)^(n-1) … (a-n)^(n-1)
a^n (a-1)^n … (a-n)^n
考虑到交换两行行列式变符号
将行列式的列作同样的交换,得
1 … 1 1
(a-n) … (a-1) a
...
...
(a-n)^(n-1) … (a-1)^(n-1) a^(n-1)
(a-n)^n … (a-1)^n a^n
这样,总的交换次数为偶数,故等式的符号不变.
且此为Vandemonde行列式
D = n!(n-1)!...3!2!1!
a^(n-1) (a-1)^(n-1) … (a-n)^(n-1)
...
...
1 1 … 1
a^n (a-1)^n … (a-n)^n
将第1行依次与第2,3,...,n-1行交换,一直交换到第n-1行
a^(n-2) (a-1)^(n-2) … (a-n)^(n-2)
...
...
1 1 … 1
a^(n-1) (a-1)^(n-1) … (a-n)^(n-1)
a^n (a-1)^n … (a-n)^n
如此类似交换,一直交换为:
1 1 … 1
a (a-1) … (a-n)
...
...
a^(n-1) (a-1)^(n-1) … (a-n)^(n-1)
a^n (a-1)^n … (a-n)^n
考虑到交换两行行列式变符号
将行列式的列作同样的交换,得
1 … 1 1
(a-n) … (a-1) a
...
...
(a-n)^(n-1) … (a-1)^(n-1) a^(n-1)
(a-n)^n … (a-1)^n a^n
这样,总的交换次数为偶数,故等式的符号不变.
且此为Vandemonde行列式
D = n!(n-1)!...3!2!1!
看了 利用范德蒙行列式求解.怎么求...的网友还看了以下:
S=0^2×1/N+(1/N)^2×1/N+(2/N)^2×1/N+…+(N—1/N)^2×1/N 2020-05-13 …
(1/(n^2 n 1 ) 2/(n^2 n 2) 3/(n^2 n 3) ……n/(n^2 n 2020-05-16 …
求教微积分的题题证明数列an=(1+1/n)n+1严格单调减少有下界,并求liman证明不等式(1 2020-06-10 …
裂项公式:1/[n(n+k)]=(1/k)[1/n–1/(n+k)]是咋推出来的啊!望赐教,谢裂项 2020-06-25 …
您好!请问如何证明当x趋于0,(1+x)的1/n次方-1等价于(1/n)*x.给的答案里面是:(1 2020-07-21 …
已知数列{an}得通项公式an=1/n+1+1/n+2+1/n+3+...+1/2n(n∈n*). 2020-07-26 …
一道高一数列题数列{an}的首项a1=3且对任意自然数n都有2/(an-an+1)=n(n+1)求 2020-07-30 …
对于不等式<n+1(n∈N*),某同学用数学归纳法的证明过程如下:(1)当n=1时,<1+1,不等 2020-08-03 …
排列数与组合数m等于0时的情况1.首先排列数有Am.n,如果m=0.n>0则Am.n=n×(n-1) 2020-11-18 …
观察下列等式①1/√2+1=√2-1/(√2+1)(√2-1)=-1+√2②1/√3+√2=√3-√ 2020-12-07 …