早教吧作业答案频道 -->数学-->
如果337×N的平方=1的平方+2的平方-3的平方+…+337的平方,则N=.我认为规律是这样:337×N的平方=1的平方+2的平方-3的平方+4的平方+5的平方-6的平方+…+337的平方
题目详情
如果337×N的平方=1的平方+2的平方-3的平方+…+337的平方,则N=_____.
我认为规律是这样:337×N的平方=1的平方+2的平方-3的平方+4的平方+5的平方-6的平方+…+337的平方
我认为规律是这样:337×N的平方=1的平方+2的平方-3的平方+4的平方+5的平方-6的平方+…+337的平方
▼优质解答
答案和解析
你可能是忙中出错了,请你认真核查原题.若原题是:
337N^2=1^2+2^2+3^2+4^2+5^2+6^2+······+337^2,则N=____.
则方法如下:
∵1^2+2^2+3^2+4^2+5^2+6^2+······+337^2=337×338×(2×337+1)/6,
∴N^2=338×(2×337+1)/6=169×675/3=13^2×225=13^2×15^2=(13×15)^2
∴N=13×15=195.
现在给出 1^2+2^2+3^2+4^2+5^2+6^2+······+n^2=n(n+1)(2n+1)/6 的证明.
∵(a+1)^3=a^3+3a^2+3a+1
∴(a+1)^3-a^3=3a^2+3a+1
依次令a=1、2、3、4、5、······、n,依次可得:
2^3-1^3=3×1^2+3×1+1
3^3-2^3=3×2^2+3×2+1
4^3-3^3=3×3^2+3×3+1
5^3-4^3=3×4^2+3×4+1
······
(n+1)^3-n^3=3n^2+3n+1
将上述n个式子相加,得:
(n+1)^3-1=3(1^2+2^2+3^2+4^2+5^2+······+n^2)+3(1+2+3+4+······+n)+n
∴3(1^2+2^2+3^2+4^2+5^2+······+n^2)
=(n+1)^3-1-3(1+2+3+4+······+n)-n
=(n+1)^3-3(n+1)n/2-(n+1)=(n+1)[(n+1)^2-3n/2-1]
=(n+1)(n^2+2n+1-3n/2-1)=n(n+1)(n+2-3/2)=n(n+1)(2n+1)/2
∴1^2+2^2+3^2+4^2+5^2+······+n^2=n(n+1)(2n+1)/6.
下面证明:337N^2=1^2+2^2-3^2+4^2+5^2-6^2+······-336^2+337^2是不成立的.
∵1^2+2^2-3^2+4^2+5^2-6^2+······-336^2+337^2
=1^2+2^2+3^2+4^2+5^2+6^2+······+337^2
-2(3^2+6^2+9^2+······+336^2)
=337×338×(2×337+1)/6-2×3^2(1^2+2^2+3^2+······+112^2)
=337×338×(2×337+1)/6-2×3^2×112×113×(2×112+1)/6
∵337是一个素数,而2×3^2×112×113×(2×112+1)中的每个因数都不是337的整数倍,
∴337不能整除2×3^2×112×113×(2×112+1),而337能整除337×338×(2×337+1),
∴此时N不可能是整数.
337N^2=1^2+2^2+3^2+4^2+5^2+6^2+······+337^2,则N=____.
则方法如下:
∵1^2+2^2+3^2+4^2+5^2+6^2+······+337^2=337×338×(2×337+1)/6,
∴N^2=338×(2×337+1)/6=169×675/3=13^2×225=13^2×15^2=(13×15)^2
∴N=13×15=195.
现在给出 1^2+2^2+3^2+4^2+5^2+6^2+······+n^2=n(n+1)(2n+1)/6 的证明.
∵(a+1)^3=a^3+3a^2+3a+1
∴(a+1)^3-a^3=3a^2+3a+1
依次令a=1、2、3、4、5、······、n,依次可得:
2^3-1^3=3×1^2+3×1+1
3^3-2^3=3×2^2+3×2+1
4^3-3^3=3×3^2+3×3+1
5^3-4^3=3×4^2+3×4+1
······
(n+1)^3-n^3=3n^2+3n+1
将上述n个式子相加,得:
(n+1)^3-1=3(1^2+2^2+3^2+4^2+5^2+······+n^2)+3(1+2+3+4+······+n)+n
∴3(1^2+2^2+3^2+4^2+5^2+······+n^2)
=(n+1)^3-1-3(1+2+3+4+······+n)-n
=(n+1)^3-3(n+1)n/2-(n+1)=(n+1)[(n+1)^2-3n/2-1]
=(n+1)(n^2+2n+1-3n/2-1)=n(n+1)(n+2-3/2)=n(n+1)(2n+1)/2
∴1^2+2^2+3^2+4^2+5^2+······+n^2=n(n+1)(2n+1)/6.
下面证明:337N^2=1^2+2^2-3^2+4^2+5^2-6^2+······-336^2+337^2是不成立的.
∵1^2+2^2-3^2+4^2+5^2-6^2+······-336^2+337^2
=1^2+2^2+3^2+4^2+5^2+6^2+······+337^2
-2(3^2+6^2+9^2+······+336^2)
=337×338×(2×337+1)/6-2×3^2(1^2+2^2+3^2+······+112^2)
=337×338×(2×337+1)/6-2×3^2×112×113×(2×112+1)/6
∵337是一个素数,而2×3^2×112×113×(2×112+1)中的每个因数都不是337的整数倍,
∴337不能整除2×3^2×112×113×(2×112+1),而337能整除337×338×(2×337+1),
∴此时N不可能是整数.
看了 如果337×N的平方=1的平...的网友还看了以下:
1.1000*10的n次方=2.已知a的m次方=2,a的n次方=8,求a的m+n次方的值3.如果X 2020-05-14 …
1.当n为奇数时,2的n次方乘以7的n次方乘以3的n次方除以(-42)的n次方=?2.分解因式,x 2020-05-14 …
计算:27×3(m次方)3(n次方)×(-9)×3(n的次方+2)x的a次方x三次方=x的2a次方 2020-05-14 …
(8x的n+3方+x的n+2方)(3/4x的n次方+x的n-1方)(a-½)(a+1/3)-(a- 2020-05-14 …
1.已知x的n-3次方乘以x的n+3次方=x的10次方,求n的值2.[(x+y)的n次方]的2次方 2020-05-14 …
求通项公式和前n项和Sn1.已知数列an=1/n(n+1)(n+2)(n+3)求Sn2.求和2+2 2020-06-08 …
若x的m+2次方乘于x的n-3次方等于X的3次方y的n+4次方乖于X的5-m次方等于y的m次方求3 2020-06-20 …
1.(x的m+n次方)的2次方乘以(-x的m-n次方)的3次方+x的m-n次方乘以(-x的4次方) 2020-06-25 …
1.如果X的n次方=a,(n是大于的1的整数),那么x叫做a的次方根.当n为奇数时,x叫做a的方根 2020-07-12 …
下列各式正确的是A.(1/2)的n次方>(1/3)的n次方B.(-π)的2/3次方>(-2根号3) 2020-08-02 …