早教吧作业答案频道 -->其他-->
(2011•昆明)如图,已知AB是⊙O的直径,点E在⊙O上,过点E的直线EF与AB的延长线交于点F,AC⊥EF,垂足为C,AE平分∠FAC.(1)求证:CF是⊙O的切线;(2)∠F=30°时,求S△OFES四边形AOEC的值
题目详情
(2011•昆明)如图,已知AB是⊙O的直径,点E在⊙O上,过点E的直线EF与AB的延长线交于点F,AC⊥EF,垂足为C,AE平分∠FAC.(1)求证:CF是⊙O的切线;
(2)∠F=30°时,求
| S△OFE |
| S四边形AOEC |
▼优质解答
答案和解析
(1)证明:连接OE,
∵AE平分∠FAC,
∴∠CAE=∠OAE,
又∵OA=OE,∠OEA=∠OAE,∠CAE=∠OEA,
∴OE∥AC,
∴∠OEF=∠ACF,
又∵AC⊥EF,
∴∠OEF=∠ACF=90°,
∴OE⊥CF,
又∵点E在⊙O上,
∴CF是⊙O的切线;
(2)∵∠OEF=90°,∠F=30°,
∴OF=2OE
又OA=OE,
∴AF=3OE,
又∵OE∥AC,
∴△OFE∽△AFC,
∴
=
=
,
∴
=
,
∴
=
.
(1)证明:连接OE,∵AE平分∠FAC,
∴∠CAE=∠OAE,
又∵OA=OE,∠OEA=∠OAE,∠CAE=∠OEA,
∴OE∥AC,
∴∠OEF=∠ACF,
又∵AC⊥EF,
∴∠OEF=∠ACF=90°,
∴OE⊥CF,
又∵点E在⊙O上,
∴CF是⊙O的切线;
(2)∵∠OEF=90°,∠F=30°,
∴OF=2OE
又OA=OE,
∴AF=3OE,
又∵OE∥AC,
∴△OFE∽△AFC,
∴
| OE |
| AC |
| OF |
| AF |
| 2 |
| 3 |
∴
| S△OFE |
| S△AFC |
| 4 |
| 9 |
∴
| S△OFE |
| S四边形AOEC |
| 4 |
| 5 |
看了 (2011•昆明)如图,已知...的网友还看了以下:
已知a+b+c=H a+b+e=J a+d+e=K b+c+d=M c+d+e=N 求a=?b=? 2020-05-16 …
选出下列各组单词画线部分读音不同的选项.()1.A.thank(画线部分:a)B.am(画线部分: 2020-05-23 …
要讲理由让我懂而不是只告诉我答案如果A-B=1,C-B=4,D-A=2,C-E=5,B+E=3,F 2020-06-15 …
选择元音字母在单词中发音不同的一项.1;A:h(a)nd;B:f(a)ce;C:(a)pple.2 2020-06-17 …
协方差cov(X+20,Y+10)=cov(X,知道了COV(X+a,Y+b)=E[(X+a)(Y 2020-06-17 …
设A,B均为n阶方阵,E为n阶单位阵,且(A-E)(B-E)=0A=E或B=E|A-E|=0或|B 2020-06-18 …
你能辨别下列各组字,并用这个字组成一个成语吗?(1)A.戍B.戌C.戎E.戒A.B.C.E.(2) 2020-06-26 …
你在百度上问的问题:x=3是函数f(x)=(x^2+ax+b)e^(3-x)的一个极值点,这个我解 2020-07-23 …
若函数f(x)在R上可导,且f(x)>f'(x),当a>b时,下列不等式成立的是A.e^af(若函 2020-07-29 …
C语言运算6、若有代数式,则不正确的C语言表达式是(C).A.a/b/c*e*3B.3*a*e/b/ 2020-12-23 …