早教吧作业答案频道 -->其他-->
设二次函数f(x)=ax2+bx+c(a>0),方程f(x)-x=0的两个根x1,x2满足0<x1<x2<1a.(1)当x∈(0,x1)时,证明x<f(x)<x1;(2)设函数f(x)的图象关于直线x=x0对称,证明x0<x12.
题目详情
设二次函数f(x)=ax2+bx+c(a>0),方程f(x)-x=0的两个根x1,x2满足0<x1<x2<
.
(1)当x∈(0,x1)时,证明x<f (x)<x1;
(2)设函数f(x)的图象关于直线x=x0对称,证明x0<
.
1 |
a |
(1)当x∈(0,x1)时,证明x<f (x)<x1;
(2)设函数f(x)的图象关于直线x=x0对称,证明x0<
x1 |
2 |
▼优质解答
答案和解析
证明:(1)令F(x)=f(x)-x.因为x1,x2是方程f(x)-x=0的根,所以
F(x)=a(x-x1)(x-x2).
当x∈(0,x1)时,由于x1<x2,得(x-x1)(x-x2)>0,又a>0,得
F(x)=a(x-x1)(x-x2)>0,
即x<f(x).
x1-f(x)
=x1-[x+F(x)]
=x1-x+a(x1-x)(x-x2)
=(x1-x)[1+a(x-x2)]
因为0<x<x1<x2<
所以x1-x>0,1+a(x-x2)=1+ax-ax2>1-ax2>0.
得x1-f(x)>0.
由此得f(x)<x1.
(2)依题意知x0=−
因为x1,x2是方程f(x)-x=0的根,即x1,x2是方程ax2+(b-1)x+c=0的根.
∴x1+x2=−
,x0=−
=
=
因为ax2<1,所以x0<
=
.
F(x)=a(x-x1)(x-x2).
当x∈(0,x1)时,由于x1<x2,得(x-x1)(x-x2)>0,又a>0,得
F(x)=a(x-x1)(x-x2)>0,
即x<f(x).
x1-f(x)
=x1-[x+F(x)]
=x1-x+a(x1-x)(x-x2)
=(x1-x)[1+a(x-x2)]
因为0<x<x1<x2<
1 |
a |
所以x1-x>0,1+a(x-x2)=1+ax-ax2>1-ax2>0.
得x1-f(x)>0.
由此得f(x)<x1.
(2)依题意知x0=−
b |
2a |
因为x1,x2是方程f(x)-x=0的根,即x1,x2是方程ax2+(b-1)x+c=0的根.
∴x1+x2=−
b−1 |
a |
b |
2a |
a(x1+x2)−1 |
2a |
ax1+ax2−1 |
2a |
因为ax2<1,所以x0<
ax1 |
2a |
x1 |
2 |
看了 设二次函数f(x)=ax2+...的网友还看了以下:
已知f(x)在R上是奇函数,且满足f(x+4)=f(x),当x属于(0,2)时,f9x不好意思啊已 2020-04-06 …
二次函数(919:14:7)已知二次函数f(x)=ax2次方+bx+c(a,b,c∈R且a≠0)满 2020-05-21 …
1.已知f(x)=ax的平方+bx+c(a不等于0)中,f(x+2)-f(x)=2x-3,且f(1 2020-06-03 …
x2+|x-a|+1,x∈R,的min①当x≥a时,f(x)=x^2+x+1-a=(x+1/2)^ 2020-06-29 …
1、设偶函数f(x)对任意x属于R,都有f(x+3)=-f(x)分之1,且当x属于-3,-2时,则 2020-07-18 …
已知函数f(x)=ax的平方+a的平方x+2b-a的三次方当x属于(-2,6)时已知函数f(x)= 2020-07-20 …
已知定义在R上的函数f(x)满足f(x+4)=f(x),当x∈[0,4]时,f(x)=2|x-m| 2020-07-26 …
已知函数f(x)=1(当x为有理数时)0(当x为无理数时),给出下列关于f(x)的性质:①f(x) 2020-08-02 …
1、若数域F属于F*,当f(x),g(x)属于F(x)时,有f(x)不整除g(x),则在F(x)*内 2020-11-20 …
已知f(x)是定义在R上的函数,且满足f(x)+f(x-1)=1,当x属于[0,1],有f(x)=x 2020-12-08 …