早教吧作业答案频道 -->数学-->
已知函数f(x)=e^x-x求证f(1/2)+f(1/3)+f(1/4)...>n+n/4(n+2)
题目详情
▼优质解答
答案和解析
此原题应为已知函数f(x)=e^x-x,求证:f(1/2)+f(1/3)+f(1/4)...+f[1/(n+1)]>n+n/4(n+2)
证明如下:
利用求导的方法,容易证明:f(x)=e^x-x >1+x^2/2,所以:f(1/n)>1+(1/n)^/2,此处省略这一步
对此不等式,分别取n=2,3,...n+1,得到n个不等式,并累加,得:
f(1/2)+f(1/3)+f(1/4)...+f[1/(n+1)]>n+(1/2)[(1/4+1/9+1/16+...+1/(n+1)^2]
利用1/n^2>1/n(n+1)=1/n-1/(n+1)对中括号中的部分拆项求和得
(1/4+1/9+1/16+...+1/(n+1)^2]=1/2-1/(n+2)=n/[2(n+2)],将此结果代入上面不等式,即可得证
证明如下:
利用求导的方法,容易证明:f(x)=e^x-x >1+x^2/2,所以:f(1/n)>1+(1/n)^/2,此处省略这一步
对此不等式,分别取n=2,3,...n+1,得到n个不等式,并累加,得:
f(1/2)+f(1/3)+f(1/4)...+f[1/(n+1)]>n+(1/2)[(1/4+1/9+1/16+...+1/(n+1)^2]
利用1/n^2>1/n(n+1)=1/n-1/(n+1)对中括号中的部分拆项求和得
(1/4+1/9+1/16+...+1/(n+1)^2]=1/2-1/(n+2)=n/[2(n+2)],将此结果代入上面不等式,即可得证
看了已知函数f(x)=e^x-x求...的网友还看了以下:
一,已知A={x|x=k/4+1/2,k∈Z} B={x|x=k/8+1/4,k∈Z}那么集合A与 2020-05-16 …
1已知f(x)=x²cosθ+2sinθ-1,θ∈(0,π),若f(x)在区间[-1,√3]上是递 2020-05-16 …
已知fn(x)=(1+x)n,(x≠0且x≠-1,n∈N*)(1)设g(x)=f3(x)+f4(x 2020-05-17 …
已知3f(x)+2f(x)=x,求f(x)怎么算我自己算了一半因为3f(x)+2f(x)=x3f( 2020-06-03 …
已知f(x)=x^2+(5-a)x+7-3a(1)如果对一切x∈R,f(x)>0恒成立,求a的范围 2020-06-06 …
对于集合M、N,定义M-N={x|x∈M,且x∉N},M⊕N=(M-N)∪(N-M).设A={y| 2020-06-07 …
,关于集合的..设集合M={x|m-4/5≤x≤m},N={x|n≤x≤n+1/4},且M,N都是 2020-07-29 …
,关于集合的..设集合M={x|m-4/5≤x≤m},N={x|n≤x≤n+1/4},且M,N都是 2020-07-29 …
1.集合M={x|x^2>4},P={x|2/{x-1}≥0,则集合P除集合M的集合N{}A:{x 2020-07-30 …
高中数学怎么做求函数的值域1、y=(1-x²)/(1+x²)2、y=√(5+4x-x²)已知f(x) 2021-02-18 …