早教吧作业答案频道 -->数学-->
变上限积分区间0-x,F(x)=∫tf(x-t)dt将x-t=u,那变成区间还是0-x,∫(x-u)f(u)du这x,t,u哪些是变量啊,为什么不是∫(x-u)f(u)d(x-u)呢?
题目详情
变上限积分
区间0-x,F(x)=∫ tf(x-t)dt
将x-t=u,那变成区间还是0-x,∫(x-u)f(u)du
这x,t,u哪些是变量啊,为什么不是∫(x-u)f(u)d(x-u)呢?
区间0-x,F(x)=∫ tf(x-t)dt
将x-t=u,那变成区间还是0-x,∫(x-u)f(u)du
这x,t,u哪些是变量啊,为什么不是∫(x-u)f(u)d(x-u)呢?
▼优质解答
答案和解析
对于F(x)而言,当然x是自变量,但是一旦x 确定了,那F(x)的值也就确定了,
现在,固定x,对于那个定积分而言,当然t是变量,现在我们要做的是 将f(x-t) 简化,所以作变量代换,令x-t=u,那么t = x-u ,dt = - du (注意这时x固定,是常量) 原来的积分变为
∫ (x-u)f(u)(-du),但注意到这时积分上下限也在改变,因为当t = 0 时 u=x,t=x时,u=0 也就是说,现在积分上限是 0,下限是x ,然后上下限交换位置,多出一个负号,正好与(-du)中的负号抵消,变为正,就变为那个样子了.
现在,固定x,对于那个定积分而言,当然t是变量,现在我们要做的是 将f(x-t) 简化,所以作变量代换,令x-t=u,那么t = x-u ,dt = - du (注意这时x固定,是常量) 原来的积分变为
∫ (x-u)f(u)(-du),但注意到这时积分上下限也在改变,因为当t = 0 时 u=x,t=x时,u=0 也就是说,现在积分上限是 0,下限是x ,然后上下限交换位置,多出一个负号,正好与(-du)中的负号抵消,变为正,就变为那个样子了.
看了 变上限积分区间0-x,F(x...的网友还看了以下:
A.t[1]=u[1]∧t[12]=w[2]∧t[13]=v[4]B.t[1]=v[l]∧t[2]= 2020-05-26 …
A.t[1]=u[1]∧t[12]=w[2]∧t[13]=v[4]B.t[1]=v[l]∧t[2]= 2020-05-26 …
A.t[1]=u[1]∧t[2]=u[2]∧t[3]=V[4]B.t[1]=v[1]∧t[2]=u[ 2020-05-26 …
A.t[1]=U[1]^T[2]=W[2]^T[3]=V[4]B.t[1]=V[1]^T[2]=U[ 2020-05-26 …
A.t[1]=u[1]∧t[2]=w[2]∧t[3]=v[4]B.t[1]=v[1]∧t[2]=u[ 2020-05-26 …
A.t[1]=u[1]∧t[2]=w[2]∧t[3]=v[4]B.t[1]=v[1]∧t[2]=u[ 2020-05-26 …
试写出系列函数复合函数的表达式1:y=根号u,u=x平方+2x-12:y=u平方+2u+1,u=s 2020-06-03 …
变上限积分区间0-x,F(x)=∫tf(x-t)dt将x-t=u,那变成区间还是0-x,∫(x-u 2020-07-10 …
高数变上限积分求导问题!题目是这样的:曲线y=∫sin(x-t)dt(下限为0,上限为x)在点x= 2020-07-31 …
∫tf(x-t)dt令x-t=u,为什么变成了∫(x-u)f(u)du啊,t=x-u,那dt不是应该 2021-01-13 …