早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图1,若△ABC和△ADE为等边三角形,M,N分别为EB,CD的中点,易证:CD=BE,△AMN是等边三角形:(1)当把△ADE绕点A旋转到图2的位置时,CD=BE吗?若相等请证明,若不等于请说明理由;(2)

题目详情
如图1,若△ABC和△ADE为等边三角形,M,N分别为EB,CD的中点,易证:CD=BE,△AMN是等边三角形:

(1)当把△ADE绕点A旋转到图2的位置时,CD=BE吗?若相等请证明,若不等于请说明理由;
(2)当把△ADE绕点A旋转到图3的位置时,△AMN还是等边三角形吗?若是请证明,若不是,请说明理由(可用第一问结论).
▼优质解答
答案和解析
(1)CD=BE.理由如下:
∵△ABC和△ADE为等边三角形,
∴AB=AC,AD=AE,∠BAC=∠EAD=60°,
∵∠BAE=∠BAC-∠EAC=60°-∠EAC,
∠DAC=∠DAE-∠EAC=60°-∠EAC,
∴∠BAE=∠DAC,
在△ABE和△ACD中,
AB=AC
∠BAE=∠DAC
AE=AD

∴△ABE≌△ACD(SAS)
∴CD=BE;

(2)△AMN是等边三角形.理由如下:
∵△ABE≌△ACD,
∴∠ABE=∠ACD.
∵M、N分别是BE、CD的中点,∴BM=CN
∵AB=AC,∠ABE=∠ACD,
在△ABM和△ACN中,
BM=CN
∠ABE=∠ACD
AB=AC

∴△ABM≌△ACN(SAS).
∴AM=AN,∠MAB=∠NAC.
∴∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60°
∴△AMN是等边三角形.