早教吧作业答案频道 -->其他-->
如图1,点A、B分别在x轴负半轴和y轴正半轴上,点C(2,-2),CA⊥AB,且CA=AB.(1)求点B的坐标;(2)CA、CB分别交坐标轴于D、E,求证:S△ABD=S△CBD;(3)连DE,如图2,求证:BD-AE=DE.
题目详情
如图1,点A、B分别在x轴负半轴和y轴正半轴上,点C(2,-2),CA⊥AB,且CA=AB.
(1)求点B的坐标;
(2)CA、CB分别交坐标轴于D、E,求证:S△ABD=S△CBD;
(3)连DE,如图2,求证:BD-AE=DE.

(1)求点B的坐标;
(2)CA、CB分别交坐标轴于D、E,求证:S△ABD=S△CBD;
(3)连DE,如图2,求证:BD-AE=DE.

▼优质解答
答案和解析
(1)作CM⊥x轴于M,
∵C(2,-2),
∴CM=2,CN=2,
∵AB⊥AC,
∴∠BAC=∠AOB=∠CMA=90°,
∴∠BAO+∠CAM=90°,∠CAM+∠ACM=90°,
∴∠BAO=∠ACM,
在△BAO和△ACM中
∴△BAO≌△ACM,
∴AO=CM=2,OB=AM=AO+OM=2+2=4,
∴B(0,4).
(2)证明:如图1,作CN⊥y轴于N,
∵AO=2,
∴A(-2,0),
∴OA=CN,
∴BD=BD,
∴根据等底(BD=BD)等高的三角形面积相等得出:S△ABD=S△CBD.
(3)证明:在BD上截取BF=AE,连AF,
∵△BAO≌△CAM,
∴∠ABF=∠CAE,
在△ABF和△ACE中
∴△ABF≌△CAE(SAS),
∴AF=CE,∠ACE=∠BAF=45°,
∵∠BAC=90°,
∴∠FAD=45°=∠ECD,
在△AFD和△CED中
∴△AFD≌△CED(SAS),
∴DE=DF,
∴BD-AE=DE.
(1)作CM⊥x轴于M,
∵C(2,-2),
∴CM=2,CN=2,
∵AB⊥AC,
∴∠BAC=∠AOB=∠CMA=90°,
∴∠BAO+∠CAM=90°,∠CAM+∠ACM=90°,
∴∠BAO=∠ACM,
在△BAO和△ACM中
|
∴△BAO≌△ACM,
∴AO=CM=2,OB=AM=AO+OM=2+2=4,
∴B(0,4).

(2)证明:如图1,作CN⊥y轴于N,
∵AO=2,
∴A(-2,0),
∴OA=CN,
∴BD=BD,
∴根据等底(BD=BD)等高的三角形面积相等得出:S△ABD=S△CBD.
(3)证明:在BD上截取BF=AE,连AF,
∵△BAO≌△CAM,
∴∠ABF=∠CAE,
在△ABF和△ACE中
|
∴△ABF≌△CAE(SAS),
∴AF=CE,∠ACE=∠BAF=45°,
∵∠BAC=90°,
∴∠FAD=45°=∠ECD,
在△AFD和△CED中
|
∴△AFD≌△CED(SAS),
∴DE=DF,
∴BD-AE=DE.
看了 如图1,点A、B分别在x轴负...的网友还看了以下:
7年级2道数学题关于绝对值的1.已知|A|=3,|B|=2,|C|1,且A小于B小于C,求A+B+C 2020-03-30 …
如果100件产品中有2件是次品,则抽出的3件产品中至少有一件是次品的抽法总数是几种?AC(上1下2 2020-04-26 …
直线恒在曲线的上方.已知曲线C:y=1/3x^3-x^2-4x+1,直线l:x+y+2k-1=0, 2020-05-14 …
如图,抛物线y=ax的平方+bx+c的顶点为C(1,4),交x轴于点A(3,0),交y轴于点D.( 2020-05-16 …
已知椭圆C:x^2+y^2/m=1的焦点在y轴上,且离心率为根号3/2,过点(0,3)的直线l与椭 2020-05-16 …
已知B1,B2分别是中心在远点,焦点在x轴上椭圆C的上下顶点,F是C的右焦点,FB1=2,F到C的 2020-05-17 …
f(sinα)与f(sinx)的区别设二次函数f(x)=x^2+bx+c(b,c属于R),已知不论 2020-05-20 …
三棱台ABC-A`B`C`的上下底面均为正三角形三棱台ABC-A'B'C'的上下底面均为正三角形, 2020-05-21 …
三棱台ABC-A`B`C`的上下底面均为正三角形,侧面为等腰梯形,且上下底面的边长比为2:3,分别 2020-05-21 …
1.已知a,b,c满足2|a-1|+根号(b-1)+c+2c+1=0,求a+b+c的值2.已知a, 2020-06-04 …