早教吧作业答案频道 -->其他-->
如图1,点A、B分别在x轴负半轴和y轴正半轴上,点C(2,-2),CA⊥AB,且CA=AB.(1)求点B的坐标;(2)CA、CB分别交坐标轴于D、E,求证:S△ABD=S△CBD;(3)连DE,如图2,求证:BD-AE=DE.
题目详情
如图1,点A、B分别在x轴负半轴和y轴正半轴上,点C(2,-2),CA⊥AB,且CA=AB.
(1)求点B的坐标;
(2)CA、CB分别交坐标轴于D、E,求证:S△ABD=S△CBD;
(3)连DE,如图2,求证:BD-AE=DE.

(1)求点B的坐标;
(2)CA、CB分别交坐标轴于D、E,求证:S△ABD=S△CBD;
(3)连DE,如图2,求证:BD-AE=DE.

▼优质解答
答案和解析
(1)作CM⊥x轴于M,
∵C(2,-2),
∴CM=2,CN=2,
∵AB⊥AC,
∴∠BAC=∠AOB=∠CMA=90°,
∴∠BAO+∠CAM=90°,∠CAM+∠ACM=90°,
∴∠BAO=∠ACM,
在△BAO和△ACM中
∴△BAO≌△ACM,
∴AO=CM=2,OB=AM=AO+OM=2+2=4,
∴B(0,4).
(2)证明:如图1,作CN⊥y轴于N,
∵AO=2,
∴A(-2,0),
∴OA=CN,
∴BD=BD,
∴根据等底(BD=BD)等高的三角形面积相等得出:S△ABD=S△CBD.
(3)证明:在BD上截取BF=AE,连AF,
∵△BAO≌△CAM,
∴∠ABF=∠CAE,
在△ABF和△ACE中
∴△ABF≌△CAE(SAS),
∴AF=CE,∠ACE=∠BAF=45°,
∵∠BAC=90°,
∴∠FAD=45°=∠ECD,
在△AFD和△CED中
∴△AFD≌△CED(SAS),
∴DE=DF,
∴BD-AE=DE.
(1)作CM⊥x轴于M,
∵C(2,-2),
∴CM=2,CN=2,
∵AB⊥AC,
∴∠BAC=∠AOB=∠CMA=90°,
∴∠BAO+∠CAM=90°,∠CAM+∠ACM=90°,
∴∠BAO=∠ACM,
在△BAO和△ACM中
|
∴△BAO≌△ACM,
∴AO=CM=2,OB=AM=AO+OM=2+2=4,
∴B(0,4).

(2)证明:如图1,作CN⊥y轴于N,
∵AO=2,
∴A(-2,0),
∴OA=CN,
∴BD=BD,
∴根据等底(BD=BD)等高的三角形面积相等得出:S△ABD=S△CBD.
(3)证明:在BD上截取BF=AE,连AF,
∵△BAO≌△CAM,
∴∠ABF=∠CAE,
在△ABF和△ACE中
|
∴△ABF≌△CAE(SAS),
∴AF=CE,∠ACE=∠BAF=45°,
∵∠BAC=90°,
∴∠FAD=45°=∠ECD,
在△AFD和△CED中
|
∴△AFD≌△CED(SAS),
∴DE=DF,
∴BD-AE=DE.
看了 如图1,点A、B分别在x轴负...的网友还看了以下:
设A,B均为n阶矩阵,其中B为可逆阵且(A+B)2=E,那么(E+AB-1)-1=()A.E+A- 2020-05-14 …
怎样使用matlab解下面的代数方程?急.syms a b c d e;2*b^2=a^2+c^2 2020-05-16 …
已知b分之a=d分之c=f分之e=2且b+d+f≠0.(1)b+d+f分之a+c+e=(2)b-d 2020-06-09 …
main(){unionEXAMPLE{struct{intx,y;}in;inta,b;}e;e 2020-06-12 …
设A=(101;020;-101)求满足方程AB+E=A^2+B的矩阵B用AB+E=A^2+B(A 2020-06-18 …
设矩阵A,B满足A=E(1,3)E(5(-2))BE(3,2(1/2)),则有A.B=E(1,3) 2020-06-28 …
a分之d不等于b分之e,方程组 2020-11-01 …
假设股票A和股票B的预期收益和标准差分别为E(RA)=0.15,E(RB)=0.25,σA=0.1σ 2020-11-06 …
A、B、C、D、E五个队进行单循环赛,胜一场3分.负一场0分.平局各得1分.比赛结束后发现,A队2胜 2020-12-07 …
七张卡片正面分别标有1,2,3,4,5,6,7七个数字,后面分别标有a,b,c,d,e,f、g七个字 2020-12-26 …