早教吧作业答案频道 -->数学-->
(2014•自贡)如图,已知抛物线y=ax2-32x+c与x轴相交于A、B两点,并与直线y=12x-2交于B、C两点,其中点C是直线y=12x-2与y轴的交点,连接AC.(1)求抛物线的解析式;(2)证明:△ABC为直角三角
题目详情

3 |
2 |
1 |
2 |
1 |
2 |
(1)求抛物线的解析式;
(2)证明:△ABC为直角三角形;
(3)△ABC内部能否截出面积最大的矩形DEFG?(顶点D、E、F、G在△ABC各边上)若能,求出最大面积;若不能,请说明理由.
▼优质解答
答案和解析
(1)∵直线y=
x-2交x轴、y轴于B、C两点,
∴B(4,0),C(0,-2),
∵y=ax2-
x+c过B、C两点,
∴
,
解得
,
∴y=
x2-
x-2.
(2)证明:如图1,连接AC,

∵y=
x2-
x-2与x负半轴交于A点,
∴A(-1,0),
在Rt△AOC中,
∵AO=1,OC=2,
∴AC=
,
在Rt△BOC中,
∵BO=4,OC=2,
∴BC=2
,
∵AB=AO+BO=1+4=5,
∴AB2=AC2+BC2,
∴△ABC为直角三角形.
(3)△ABC内部可截出面积最大的矩形DEFG,面积为
1 |
2 |
∴B(4,0),C(0,-2),
∵y=ax2-
3 |
2 |
∴
|
解得
|
∴y=
1 |
2 |
3 |
2 |
(2)证明:如图1,连接AC,

∵y=
1 |
2 |
3 |
2 |
∴A(-1,0),
在Rt△AOC中,
∵AO=1,OC=2,
∴AC=
5 |
在Rt△BOC中,
∵BO=4,OC=2,
∴BC=2
5 |
∵AB=AO+BO=1+4=5,
∴AB2=AC2+BC2,
∴△ABC为直角三角形.
(3)△ABC内部可截出面积最大的矩形DEFG,面积为
1 |
2 |
3 |
2 |
(2)求证三角形为直角三角形,我们通常考虑证明一角为90°或勾股定理.本题中未提及特殊角度,而已知A、B、C坐标,即可知AB、AC、BC,则显然可用勾股定理证明.
(3)在直角三角形中截出矩形,面积最大,我们易得两种情形,①一点为C,AB、AC、BC边上各有一点,②AB边上有两点,AC、BC边上各有一点.讨论时可设矩形一边长x,利用三角形相似等性质表示另一边,进而描述面积函数.利用二次函数最值性质可求得最大面积.
- 名师点评
-
- 本题考点:
- 二次函数综合题.
-
- 考点点评:
- 本题考查了二次函数图象的基本性质,最值问题及相似三角形性质等知识点,难度适中,适合学生巩固知识.
广告
看了 (2014•自贡)如图,已知...的网友还看了以下:
如图,抛物线y=0.5x²-x+a与x轴交于点A,B,与y交于点C,其顶点在直线y=-2x上.⑴求 2020-05-16 …
1)已知f(x)=ax的平方+bx+c满足f(1)=0,a>b>c①求c/a的取值范围②若该函数图 2020-05-20 …
如图所示,已知函数y=-x+l的图象与x轴、y轴分别交于点C、B,与双曲线y=交于点A、D,若AB 2020-07-13 …
如图抛物线y=1/4x^2+bx+c与x轴交于A(-2,0)如图抛物线y=1/4x^2+bx+c与 2020-07-29 …
已知椭圆C中心为坐标原点O一长轴端点(0,2)已知椭圆C的中心为坐标原点,一个长轴端点为(0,2) 2020-07-30 …
已知椭圆a^2/y^2+b^2/x^2=1的离心率为根号2/2,焦点F1(0,-c)F2(0,c) 2020-08-01 …
已知实系数三次多项式函数y=f(x)的最高次项系数为12,其图形与水平线y=25交于相异的三点(0 2020-08-03 …
已知过原点O的一条直线与函数y=log8x的图象交于AB两点已知过原点O的一条直线与函数y=log8 2020-10-30 …
一,已知y﹣1与x+1成正比例关系,且当x=1时,y=5.1)求y与x的函数关系.2)若图像与x交于 2020-12-05 …
如图所示,直线y=-x+5与双曲线y交于a,b两点,与y交于c,ca比ab等于1比3 2021-01-10 …