早教吧作业答案频道 -->数学-->
(1)问题探究如图1,分别以△ABC的边AC与边BC为边,向△ABC外作正方形ACD1E1和正方形BCD2E2,过点C作直线KH交直线AB于点H,使∠AHK=∠ACD1作D1M⊥KH,D2N⊥KH,垂足分别为点M,N.试探究线段D1M与
题目详情
(1)问题探究
如图1,分别以△ABC的边AC与边BC为边,向△ABC外作正方形ACD1E1和正方形BCD2E2,过点C作直线KH交直线AB于点H,使∠AHK=∠ACD1作D1M⊥KH,D2N⊥KH,垂足分别为点M,N.试探究线段D1M与线段D2N的数量关系,并加以证明.
(2)拓展延伸

①如图2,若将“问题探究”中的正方形改为正三角形,过点C作直线K1H1,K2H2,分别交直线AB于点H1,H2,使∠AH1K1=∠BH2K2=∠ACD1.作D1M⊥K1H1,D2N⊥K2H2,垂足分别为点M,N.D1M=D2N是否仍成立?若成立,给出证明;若不成立,说明理由.
②如图3,若将①中的“正三角形”改为“正五边形”,其他条件不变.D1M=D2N是否仍成立?(要求:在图3中补全图形,注明字母,直接写出结论,不需证明)
如图1,分别以△ABC的边AC与边BC为边,向△ABC外作正方形ACD1E1和正方形BCD2E2,过点C作直线KH交直线AB于点H,使∠AHK=∠ACD1作D1M⊥KH,D2N⊥KH,垂足分别为点M,N.试探究线段D1M与线段D2N的数量关系,并加以证明.
(2)拓展延伸

①如图2,若将“问题探究”中的正方形改为正三角形,过点C作直线K1H1,K2H2,分别交直线AB于点H1,H2,使∠AH1K1=∠BH2K2=∠ACD1.作D1M⊥K1H1,D2N⊥K2H2,垂足分别为点M,N.D1M=D2N是否仍成立?若成立,给出证明;若不成立,说明理由.
②如图3,若将①中的“正三角形”改为“正五边形”,其他条件不变.D1M=D2N是否仍成立?(要求:在图3中补全图形,注明字母,直接写出结论,不需证明)
▼优质解答
答案和解析
(1)D1M=D2N.
证明:∵∠ACD1=90°,
∴∠ACH+∠D1CK=180°-90°=90°,
∵∠AHK=∠ACD1=90°,
∴∠ACH+∠HAC=90°,
∴∠D1CK=∠HAC,
在△ACH和△CD1M中,
,
∴△ACH≌△CD1M(AAS),
∴D1M=CH,
同理可证D2N=CH,
∴D1M=D2N;

(2)①证明:D1M=D2N成立.
过点C作CG⊥AB,垂足为点G,
∵∠H1AC+∠ACH1+∠AH1C=180°,
∠D1CM+∠ACH1+∠ACD1=180°,
∠AH1C=∠ACD1,
∴∠H1AC=∠D1CM,
在△ACG和△CD1M中,
,
∴△ACG≌△CD1M(AAS),
∴CG=D1M,
同理可证CG=D2N,
∴D1M=D2N;
②作图正确.
D1M=D2N还成立.
证明:∵∠ACD1=90°,
∴∠ACH+∠D1CK=180°-90°=90°,
∵∠AHK=∠ACD1=90°,
∴∠ACH+∠HAC=90°,
∴∠D1CK=∠HAC,
在△ACH和△CD1M中,
|
∴△ACH≌△CD1M(AAS),
∴D1M=CH,
同理可证D2N=CH,
∴D1M=D2N;

(2)①证明:D1M=D2N成立.
过点C作CG⊥AB,垂足为点G,
∵∠H1AC+∠ACH1+∠AH1C=180°,
∠D1CM+∠ACH1+∠ACD1=180°,
∠AH1C=∠ACD1,
∴∠H1AC=∠D1CM,
在△ACG和△CD1M中,
|
∴△ACG≌△CD1M(AAS),
∴CG=D1M,
同理可证CG=D2N,
∴D1M=D2N;
②作图正确.
D1M=D2N还成立.
看了 (1)问题探究如图1,分别以...的网友还看了以下:
如图1,四边形ABCD中,点E、F、G、H分别为边AB、BC、CD、DA的中点,顺次连接E、F、G 2020-05-13 …
一个直角三角形的两直角边为a,b斜边上的高为h,斜边为c,试说明c+h,a+b,h为边的三角形是R 2020-06-07 …
一道关于勾股定理的小题直角三角形的两条直角边分别为a、b,斜边为c,斜边上的高为h,则以c+h,a 2020-06-10 …
勾股定理的应用已知直角三角形ABC两条直角边分别为a和b,斜边为c,斜边上的高为h,是判断以h,c 2020-06-10 …
(1/2)已知四边形PQRS的圆内接四边形,角PSR=90度,过点Q作PR、PS的垂线,垂足分别为 2020-06-19 …
勾股定理已知Rt△ABC的两条直角分别为a和b,斜边为c,斜边上的高为h,试判断以h、c+h、a+ 2020-07-13 …
如图正方形ABCD的边长为2,点E是BC边的中点,点F在BC延长线上,EF=DE,以CF为边做正方 2020-07-20 …
若a,b,c是直角三角形的三条边长,斜边上c上的高长是h,给出下列的结论:若a,b,c是Rt△的3 2020-07-30 …
在Rt△ABC中,∠C=90°,∠A、∠B、∠C对应的边长分别为a、b、c,斜边上的高CD长为h就 2020-07-30 …
若a、b、c为直角三角形的三条边,斜边c上的高为h.1)以a+b、c+h和h的长为边能否组成直角三 2020-08-02 …