早教吧作业答案频道 -->数学-->
在平面直角坐标系xOy中,过点(0,2)且平行于x轴的直线,与直线y=x-1交于点A.点A关于直线x=1的对称点为B,抛物线C1:y=x2+bx+c经过点A,B.(1)求点A,B的坐标;(2)求抛物线C1的表达式及
题目详情
在平面直角坐标系xOy中,过点(0,2)且平行于x轴的直线,与直线y=x-1交于点A.点A关于直线x=1的对称点为B,抛物线C1:y=x2+bx+c经过点A,B.
(1)求点A,B的坐标;
(2)求抛物线C1的表达式及顶点坐标;
(3)若抛物线C2:y=ax2+1(a≠0)与线段AB恰有一个公共点,结合函数的图象,求a的取值范围.
(1)求点A,B的坐标;
(2)求抛物线C1的表达式及顶点坐标;
(3)若抛物线C2:y=ax2+1(a≠0)与线段AB恰有一个公共点,结合函数的图象,求a的取值范围.
▼优质解答
答案和解析
(1)过点(0,2)且平行于x轴的直线解析式为y=2,
令y=2,则有x-1=2,解得:x=3,
故A点的坐标为(3,2).
∵点A关于直线x=1的对称点为B,
∴B点的坐标为(-1,2).
(2)∵抛物线C1:y=x2+bx+c经过点A,B,
∴有
,解得:
,
故求抛物线C1的表达式为y=x2-2x-1.
∵y=x2-2x-1=(x-1)2-2,
∴抛物线C1的顶点坐标为(1,-2).
(3)依照题意画出题形如下.

令y=2,则有ax2+1=2,解得:x=±
,其中a>0,
∵抛物线C2:y=ax2+1(a≠0)与线段AB恰有一个公共点,
∴有
,解得:
≤a<1.
故a的取值范围为
≤a<1.
令y=2,则有x-1=2,解得:x=3,
故A点的坐标为(3,2).
∵点A关于直线x=1的对称点为B,
∴B点的坐标为(-1,2).
(2)∵抛物线C1:y=x2+bx+c经过点A,B,
∴有
|
|
故求抛物线C1的表达式为y=x2-2x-1.
∵y=x2-2x-1=(x-1)2-2,
∴抛物线C1的顶点坐标为(1,-2).
(3)依照题意画出题形如下.

令y=2,则有ax2+1=2,解得:x=±
1 | ||
|
∵抛物线C2:y=ax2+1(a≠0)与线段AB恰有一个公共点,
∴有
|
1 |
9 |
故a的取值范围为
1 |
9 |
看了 在平面直角坐标系xOy中,过...的网友还看了以下:
(2014•博白县模拟)如图,点A(2,6)和点B(点B在点A的右侧)在反比例函数的图象上,点C在 2020-05-17 …
如图1,在平面直角坐标系中,等腰Rt△AOB的斜边OB在x轴上,直线y=3x-4经过等腰Rt△AO 2020-05-17 …
高考参数方程(1)经过点B(-2,π/4),垂直于极轴的直线的极坐标方程(2)经过点A(3,π/3 2020-06-10 …
在平面直角坐标系中,直线L1:y=2x+b交x轴正半轴于点A,点B(4,0)在点A的右边,现过点B 2020-06-14 …
如图,在直角坐标平面内,O为坐标原点,A点的坐标为(1,0),B点在x轴上且在点A的右侧,AB=O 2020-06-14 …
如图,在平面直角坐标系中,直线y=-3x-3与x轴交于点A,与y轴交于点C.抛物线y=x2+bx+ 2020-06-23 …
数轴上A点对应得数是-5,B点在A点右边,电子蚂蚁甲,乙在点B处分别以2个单位/秒,1个单位/秒的 2020-07-09 …
求下列曲线的极坐标方程.(1)经过点A(3,π3),平行于极轴的直线;(2)经过点B(-2,π4) 2020-07-31 …
初一平行数学题已知直线a‖b,直线a,b上分别有A,B两点,直线c与直线a,b分别交与CD两点,有 2020-08-02 …
如图,点A(2,6)和点B(点B在点A的右侧)在反比例函数的图像上,点C在轴上,BC//轴,,二次 2020-08-03 …