早教吧作业答案频道 -->其他-->
(2010•福建模拟)考察等式:C0mCrn−m+C1mCr−1n−m+…+CrmC0n−m=Crn(*),其中n、m、r∈N*,r≤m<n且r≤n-m.某同学用概率论方法证明等式(*)如下:设一批产品共有n件,其中m件是次品,其
题目详情
(2010•福建模拟)考察等式:
+
+…+
=
(*),其中n、m、r∈N*,r≤m<n且r≤n-m.某同学用概率论方法证明等式(*)如下:
设一批产品共有n件,其中m件是次品,其余为正品.现从中随机取出r件产品,
记事件Ak={取到的r件产品中恰有k件次品},则P(Ak)=
,k=0,1,2,…,r.
显然A0,A1,…,Ar为互斥事件,且A0∪A1∪…∪Ar=Ω(必然事件),
因此1=P(Ω)=P(A0)+P(A1)+…P(Ar)=
,
所以
+
+…+
=
,即等式(*)成立.
对此,有的同学认为上述证明是正确的,体现了偶然性与必然性的统一;但有的同学对上述证明方法的科学性与严谨性提出质疑.现有以下四个判断:
①等式(*)成立 ②等式(*)不成立 ③证明正确 ④证明不正确
试写出所有正确判断的序号______.
C | 0 m |
C | r n−m |
C | 1 m |
C | r−1 n−m |
C | r m |
C | 0 n−m |
C | r n |
设一批产品共有n件,其中m件是次品,其余为正品.现从中随机取出r件产品,
记事件Ak={取到的r件产品中恰有k件次品},则P(Ak)=
| ||||
|
显然A0,A1,…,Ar为互斥事件,且A0∪A1∪…∪Ar=Ω(必然事件),
因此1=P(Ω)=P(A0)+P(A1)+…P(Ar)=
| ||||||||||||
|
所以
C | 0 m |
C | r n−m |
C | 1 m |
C | r−1 n−m |
C | r m |
C | 0 n−m |
C | r n |
对此,有的同学认为上述证明是正确的,体现了偶然性与必然性的统一;但有的同学对上述证明方法的科学性与严谨性提出质疑.现有以下四个判断:
①等式(*)成立 ②等式(*)不成立 ③证明正确 ④证明不正确
试写出所有正确判断的序号______.
▼优质解答
答案和解析
设一批产品共有n件,其中m件是次品,其余n-m件为正品.
现从中随机取出r件产品,记事件Ak={取到的产品中恰有k件次品},则取到的产品中恰有k件次品共有
种情况,又从中随机取出r件产品,共有
种情况,k=0,1,…,r,故其概率为P(Ak)=
,k=0,1,…,r.
∵A0,A1,…,Ar为互斥事件,且A0∪A1∪…∪Ar=Ω(必然事件),
因此1=P(Ω)=P(A0)+P(A1)+…P(Ar)=
,
所以Cm0Cn-mr+Cm1Cn-mr-1+…+CmrCn-m0=Cnr,即等式(*)成立.
从而可知正确的序号为:①③
故答案为:①③
现从中随机取出r件产品,记事件Ak={取到的产品中恰有k件次品},则取到的产品中恰有k件次品共有
C | k m |
C | r−k n−m |
C | r n |
| ||||
|
∵A0,A1,…,Ar为互斥事件,且A0∪A1∪…∪Ar=Ω(必然事件),
因此1=P(Ω)=P(A0)+P(A1)+…P(Ar)=
| ||||||||||||
|
所以Cm0Cn-mr+Cm1Cn-mr-1+…+CmrCn-m0=Cnr,即等式(*)成立.
从而可知正确的序号为:①③
故答案为:①③
看了 (2010•福建模拟)考察等...的网友还看了以下:
求救~方程ax^2+bx+c=0(a≠0)有一非零根x1,方程-ax^2+bx+c=0有一非零根x 2020-05-16 …
若a+b+c=o,一元二次根式ax²+bx+c=0必有一根,是什么,若c为0,一元二次根式ax²+ 2020-05-23 …
(2013•金衢十一校一模)小明从图所示的二次函数y=ax2+bx+c的图象中,观察得出了下面四条 2020-06-10 …
已知a,b,c都是实数,且满足(2-a)的平方+(根号a的平方+b+c)+|c+8|=0,且ax的 2020-07-12 …
二次函数y=ax2+bx+c(a≠0)的图象如图,下列四个结论:①4a+c<0;②m(am+b)+ 2020-07-30 …
关于二次函数y=ax2+bx+c图象有下列命题:(1)当c=0时,函数的图象经过原点;(2)当c> 2020-08-01 …
7、若关于x的方程x2+b|x|+c=0恰有三个不同的实数解,则b、c的取值是()A、c<0,b=0 2020-11-01 …
关于二次函数y=ax2+bx+c图象有下列命题:(1)当c=0时,函数的图象经过原点;(2)当c>0 2020-11-04 …
对于一元二次方程x2+bx+c=0下面的结论错误的是()A.当c=0时,则方程必有一个根为零B.当c 2020-12-01 …
⑴(-2)^11+(-2)^10的值是A.-2B.(-2)^21C.0D.-2^10⑵下列说法中,正 2021-02-03 …