早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知向量a=(cosλθ,c0s(10-λ)θ),向量b=(sin(10-λ)θ,sinλθ),λ,θ∈R当θ=π/20时,求证:向量a平行向量b

题目详情
已知向量a=(cosλθ,c0s(10-λ)θ),向量b=(sin(10-λ)θ,sinλθ),λ,θ∈R
当θ=π/20时,求证:向量a平行向量b
▼优质解答
答案和解析
已知a=(cosλθ,cos[(10-λ)θ]);b=(sin[(10-λ)θ],sinλθ);λ,θ∈R,当θ=π/20时,求证a∥b.
当θ=π/20时,
a=(cos(λπ/20),cos[(10-λ)π/20])=(cos(λπ/20),cos(π/2-λπ/20))
=(cos(λπ/20),sin(λπ/20));
b=(sin[(10-λ)π/20],sin(λπ/20))=(sin(π/2-λπ/20),sin(λπ/20))
=(cos(λπ/20),sin(λπ/20)).
故此时a=b,即a,b共线,当然也就有a∥b.