早教吧作业答案频道 -->其他-->
设等差数列{an}{bn}的前几项的和分别为Sn,Tn,若Sn/Tn=n/2n+1,则a5/b5=?,a5/b3=?
题目详情
设等差数列{an}{bn}的前几项的和分别为Sn,Tn,若Sn/Tn=n/2n+1,则a5/b5=?,a5/b3=?
▼优质解答
答案和解析
已知等差数列{an}{bn}的前几项的和分别为Sn,Tn
设公差分别为d和d'
Sn=[2a1+(n-1)d]*n/2 Tn=(2b1+(n-1)d']*n/2
已知Sn/Tn=n/(2n+1)
当n=1时 a1/b1=S1/T1=1/3 b1=3a1 (1)
当n=21时 S2/T2=(2a1+d)/(2b1+d')=(2a1+d)/(6a1+d')=2/5
2(6a1+d')=5(2a1+d)
12a1+2d'=10a1+5d
解得d'=5d/2-a1 (2)
当n=3时 Sn/T3=(2a1+2d)/(2b1+2d')=(a1+d)/(b1+d)=3/7
(1)(2)代入 (a1+d)/(2a1+5d/2)=3/7
6a1+15d/2=7a1+7d
解得d=2a1 (3)
于是d'=5d/2-a1=4a1 (4)
所以a5/b5=(a1+4d)/(b1+4d')=(a1+8a1)/[3a1+16a1)] [(1)(3)(4)代入]
=(9a1)/(19a1)
=9/19
a3/b3=(a1+2d)/(b1+2d')=(a1+4a1)/(3a1+8a1) [(1)(3)(4)代入]
=(5a1)/(11a1)
=5/11
设公差分别为d和d'
Sn=[2a1+(n-1)d]*n/2 Tn=(2b1+(n-1)d']*n/2
已知Sn/Tn=n/(2n+1)
当n=1时 a1/b1=S1/T1=1/3 b1=3a1 (1)
当n=21时 S2/T2=(2a1+d)/(2b1+d')=(2a1+d)/(6a1+d')=2/5
2(6a1+d')=5(2a1+d)
12a1+2d'=10a1+5d
解得d'=5d/2-a1 (2)
当n=3时 Sn/T3=(2a1+2d)/(2b1+2d')=(a1+d)/(b1+d)=3/7
(1)(2)代入 (a1+d)/(2a1+5d/2)=3/7
6a1+15d/2=7a1+7d
解得d=2a1 (3)
于是d'=5d/2-a1=4a1 (4)
所以a5/b5=(a1+4d)/(b1+4d')=(a1+8a1)/[3a1+16a1)] [(1)(3)(4)代入]
=(9a1)/(19a1)
=9/19
a3/b3=(a1+2d)/(b1+2d')=(a1+4a1)/(3a1+8a1) [(1)(3)(4)代入]
=(5a1)/(11a1)
=5/11
看了 设等差数列{an}{bn}的...的网友还看了以下:
已知实数等比数列{an}前n项和为Sn,S3=14,S6=126.(1)求数列{an}的通项公式a 2020-05-13 …
数列{an}为正项等比数列,且满足;设正项数列{bn}的前n项和为Sn,满足.(1)求{an}的通 2020-05-13 …
数列为正项等比数列,且满足;设正项数列的前n项和为Sn,满足.(1)求的通项公式;(2)设的前项的 2020-05-13 …
已知数列{an}是等比数列,首项a1=2,a4=16,数列{bn}是等差数列,且b3=a3,b5= 2020-05-14 …
在等比数列an中,a1=2,a4=16,(1)求an的通项公式(2)a1,a2分别为等差数列bn的 2020-05-14 …
数列{an}的前n项的和Sn=2an-1(n∈N*),数列{bn}满足:b1=3,bn+1=an+ 2020-06-08 …
1.等比数列{an},已知a1a3a11=8,则a2a8=?2.已知等比数列{an}前n项的积Tn 2020-07-25 …
已知首项为1,公比为t(t>0)的无穷等比数列的前n项和为Sn,设Tn=(1+Sn)/Sn+1+1 2020-08-02 …
请问,这个式子是怎么得到的,推导1+(1+2)+(1+2+3)+...+(1+2+3+...+n) 2020-08-03 …
对于正整数n≥2,用Tn表示关于x的一元二次方程x2+2ax+b=0有实数根的有序数组(a,b)的组 2020-11-12 …