早教吧作业答案频道 -->数学-->
2n次方=b1/1+b2/3+b3/5+…+bn/2n次方-1,求数列bn的前n项和Tn
题目详情
2n次方=b1/1+b2/3+b3/5+…+bn/2n次方-1,求数列bn的前n项和Tn
▼优质解答
答案和解析
2n^2=b1/1+b2/3+b3/5+…+bn/(2n-1) (1)
n=1,b1=2
2(n-1)^2=b1/1+b2/3+b3/5+…+b(n-1)/(2n-3) (2)
(1)-(2)
bn/(2n-1) = 2(2n-1)
bn = 2(2n-1)^2
Tn =b1+b2+...+bn
consider
n^2 = n(n+1) -n
=(1/3)[n(n+1)(n+2)-(n-1)n(n+1)] -(1/2)[ n(n+1) -(n-1)n]
1^2+2^2+...+n^2
=(1/3)n(n+1)(n+2)-(1/2)n(n+1)
=(1/6)n(n+1)(2n+1)
bn = 2(2n-1)^2
Tn =b1+b2+...+bn
=2 .(1/6)(2n-1)[(2n-1)+1][2(2n-1)+1]
=(1/3)(2n-1)(2n)(4n-1)
=(2/3)n(2n-1)(4n-1)
n=1,b1=2
2(n-1)^2=b1/1+b2/3+b3/5+…+b(n-1)/(2n-3) (2)
(1)-(2)
bn/(2n-1) = 2(2n-1)
bn = 2(2n-1)^2
Tn =b1+b2+...+bn
consider
n^2 = n(n+1) -n
=(1/3)[n(n+1)(n+2)-(n-1)n(n+1)] -(1/2)[ n(n+1) -(n-1)n]
1^2+2^2+...+n^2
=(1/3)n(n+1)(n+2)-(1/2)n(n+1)
=(1/6)n(n+1)(2n+1)
bn = 2(2n-1)^2
Tn =b1+b2+...+bn
=2 .(1/6)(2n-1)[(2n-1)+1][2(2n-1)+1]
=(1/3)(2n-1)(2n)(4n-1)
=(2/3)n(2n-1)(4n-1)
看了 2n次方=b1/1+b2/3...的网友还看了以下:
已知数列{an}的前n项和Sn=-1/2n^2+kn,k∈N*,且Sn的最大值为81)确定常数k, 2020-05-13 …
求数列{n^2*2^n}的前n项和(高二数列问题)注意啊是n的平方再乘以2的n次方啊 2020-06-07 …
lim(n→∞)(n方分之1+n方分之2+…+n方分之n)lim(n→∞)(n方+n+1分之1+n 2020-07-10 …
lim(n→∞)(n方+n+1分之1+n方+n+2分之2+…+n方+n+n分之n)大家念出来就懂了 2020-07-10 …
lim(n→∞)(n方分之1+n方分之2+…+n方分之m)题抄错了是lim(n→∞)(n方分之1+ 2020-07-10 …
(1)、数列1,1/1+2,1/1+2+3,……1/1+2+3+……+n的前n项和Sn=?(2)、 2020-07-14 …
等差数列用裂项相消的方法已知等差数列{an}的前n项和Sn,a2=4,S5=35求数列{an*2^ 2020-07-17 …
数列{an}的前n项和Sn=-3/2*n^2+205/2*n,求前n项和.数列{an}的前n项和S 2020-07-18 …
行线方程组的计算已知n维列向量α1,α2,.αn中,前n-1个向量线性相关,后n-1个向量线性无关 2020-07-26 …
设向量组α1,α2,...,αn中,前n-1个向量线性相关,后n-1个向量线性无关,试讨论:(1) 2020-07-26 …