早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设等差数列{an}满足a2=9,且a1,a5是方程x2-16x+60=0的两根.(1)求{an}的通项公式;(2)求数列{|an|}的前n项和Tn.

题目详情
设等差数列{an}满足a2=9,且a1,a5是方程x2-16x+60=0的两根.
(1)求{an}的通项公式;
(2)求数列{|an|}的前n项和Tn
▼优质解答
答案和解析
(1)∵a2=9,且a1,a5是方程x2-16x+60=0的两根,
∴a1+a5=2a3=16,解得d=-1,
故an=-n+11.
(2)数列{an}的前n项和为Sn,由题意得当n≤11,|an|=-n+11,
当n≥12,|an|=n-11,
故当n≤11时,Tn=Sn=−
1
2
n2+
21
2
n.
当n≥12时,Tn=−Sn+2S11=
1
2
n2−
21
2
n+110.
综上所述,Tn=
1
2
n2+
21
2
n,n≤11
1
2
n2−
21
2
n+110,n≥12.