早教吧 育儿知识 作业答案 考试题库 百科 知识分享

若R(a1,a2,a3)=2,R(a2,a3,a4)=3则为什么a1,a2,a3,a4线性相关?

题目详情
若R(a1,a2,a3)=2,R(a2,a3,a4)=3则为什么a1,a2,a3,a4线性相关?
▼优质解答
答案和解析
R(A1,A2,A3)=2
说明这个向量组不是满秩 则线性相关
则存在不全为0的数k1,k2,k3
k1A1+k2A2+k3A3=0 .(1)
若k1=0
则 k2A2+k3A3=0
说明k2,k3线性相关 而这与R(A2,A3,A4)=3矛盾
所以k1≠0
由1式可知A1能由A2,A3线性表示
反证法证明A4不能由A1,A2,A3线性表示
若A4能由A1,A2,A3线性表示
则存在一组不全为0的数k1,k2,k3
使A4=k1A1+k2A2+k3A3
由第一步的证明:A1能由A2,A3线性表示
设A1=b2A2+b3A3 b1 ,b2 不全为0
则: k1b2A2+k1b3A3+k2A2+k3A3=A4.(2)
因为k1 k2 b1 b2不全为0
由2这说明A2 A3 A4线性相关,则必不满秩
这与R(A2,A3,A4)=3矛盾
所以A4不能由A1,A2,A3线性表示