早教吧作业答案频道 -->数学-->
已知数列A中,A1=2,对于任意的P,Q属于正整数,Ap+q=Ap+Aq,①求数列A的通项公式.②若数列BN满足AN=B1/2+1-B2/2的平方+1+B3/2的三次方加1-B4/2的四次方加1+.+(-1)*BN/2的N次方加1,求BN的通项公式.(上面第
题目详情
已知数列A中,A1=2,对于任意的P,Q属于正整数,Ap+q=Ap+Aq,①求数列A的通项公式.
②若数列BN满足AN=B1/2+1-B2/2的平方+1+B3/2的三次方加1 -B4/2的四次方加1 +.+(-1)*BN/2的N次方加1,求BN的通项公式.(上面第①问不用管,只要答第②问就行了
②若数列BN满足AN=B1/2+1-B2/2的平方+1+B3/2的三次方加1 -B4/2的四次方加1 +.+(-1)*BN/2的N次方加1,求BN的通项公式.(上面第①问不用管,只要答第②问就行了
▼优质解答
答案和解析
①an=2n
②an=b1/2-b2/2²+b3/2³-b4/2⁴+.+(-1)^(n+1)bn/2ⁿ
当n=1时,a1=b1/2,b1=2a1=4
当n≥2时,
a(n-1)=b1/2-b2/2²+b3/2³-b4/2⁴+.+(-1)^n*b(n-1)/2^(n-1)
an-a(n-1)=(-1)^(n+1)bn/2ⁿ=2
bn=(-1)^(n+1)*2^(n+1)=(-2)^(n+1) (#)
n=1时,(#)也成立
∴bn=(-2)^(n+1) (n∈N*)
若是
②an=b1/2-b2/2²+b3/2³-b4/2⁴+.+(-1)^(n+1)bn/2ⁿ+1
当n=1时,a1=b1/2+1, b1=2(a1-1)=2
当n≥2时,
a(n-1)=b1/2-b2/2²+b3/2³-b4/2⁴+.+(-1)^n*b(n-1)/2^(n-1)+1
an-a(n-1)=(-1)^(n+1)bn/2ⁿ=2
bn=(-1)^(n+1)*2^(n+1)=(-2)^(n+1) (#)
n=1时,(#)不成立
∴bn={2 (n=1)
{(-2)^(n+1) (n∈N*)
②an=b1/2-b2/2²+b3/2³-b4/2⁴+.+(-1)^(n+1)bn/2ⁿ
当n=1时,a1=b1/2,b1=2a1=4
当n≥2时,
a(n-1)=b1/2-b2/2²+b3/2³-b4/2⁴+.+(-1)^n*b(n-1)/2^(n-1)
an-a(n-1)=(-1)^(n+1)bn/2ⁿ=2
bn=(-1)^(n+1)*2^(n+1)=(-2)^(n+1) (#)
n=1时,(#)也成立
∴bn=(-2)^(n+1) (n∈N*)
若是
②an=b1/2-b2/2²+b3/2³-b4/2⁴+.+(-1)^(n+1)bn/2ⁿ+1
当n=1时,a1=b1/2+1, b1=2(a1-1)=2
当n≥2时,
a(n-1)=b1/2-b2/2²+b3/2³-b4/2⁴+.+(-1)^n*b(n-1)/2^(n-1)+1
an-a(n-1)=(-1)^(n+1)bn/2ⁿ=2
bn=(-1)^(n+1)*2^(n+1)=(-2)^(n+1) (#)
n=1时,(#)不成立
∴bn={2 (n=1)
{(-2)^(n+1) (n∈N*)
看了 已知数列A中,A1=2,对于...的网友还看了以下:
已知数列AnBn,满足A1=B1=1,A(n+1)-An=B(n+1)Bn=2,试分别求下列数列的 2020-04-07 …
求高手解一道数列通项题a(n+1)=1/[a(n)+2a(1)]=3/4小括号里面是下标.这题有点 2020-06-05 …
已知正项数列{an}中a1=2an^-an*a(n-1)-2n*a(n-1)-4n^2=0(n>= 2020-07-16 …
信息安全数学基础的习题:设m,n为正整数,a>1是整数证明:(a^m-1,a^n-1)=a^(m, 2020-07-22 …
高中数列题(说明:"[]"中内容表示下标)以数列{a[n]}的任意相邻两项为坐标的点P[n](a[ 2020-07-29 …
求证对任意正项数列an,lim(上极限)(n趋向正无穷){[1+a(n+1)]/an}>=e,大致 2020-08-02 …
设A*表示n阶方阵A的伴随矩阵,证明1.(λA)*=λ^n-1A*对任意数λ成立2.(AB)*=B* 2020-11-02 …
设数列{an}满足a(n+1)=2an+n^2-4n+1.(1)若a1=3,求证:存在f(n)=an 2020-11-19 …
在数列{an}中,a1=1,a(n+1)=1-1/4an,bn=2/(2an-1),其中n∈N*(1 2020-12-09 …
a^n-a^n-1+a^n-2a^n-a^n+1-a^n-1实在不好意思.. 2020-12-25 …