早教吧作业答案频道 -->数学-->
已知,m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|<|n|,抛物线y=x2+bx+c的图象经过点A(m,0),B(0,n),如图所示.(1)求这个抛物线的解析式;(2)设(1)中的抛物线与x轴的另一
题目详情
已知,m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|<|n|,抛物线y=x2+bx+c的图象经过点A(m,0),B(0,n),如图所示.
(1)求这个抛物线的解析式;
(2)设(1)中的抛物线与x轴的另一个交点为C,抛物线的顶点为D,试求出点C,D的坐标,并判断△BCD的形状;
(3)点P是直线BC上的一个动点(点P不与点B和点C重合),过点P作x轴的垂线,交抛物线于点M,点Q在直线BC上,距离点P为
个单位长度,设点P的横坐标为t,△PMQ的面积为S,求出S与t之间的函数关系式.

(1)求这个抛物线的解析式;
(2)设(1)中的抛物线与x轴的另一个交点为C,抛物线的顶点为D,试求出点C,D的坐标,并判断△BCD的形状;
(3)点P是直线BC上的一个动点(点P不与点B和点C重合),过点P作x轴的垂线,交抛物线于点M,点Q在直线BC上,距离点P为
2 |

▼优质解答
答案和解析
解(1)∵x2+4x+3=0,
∴x1=-1,x2=-3,
∵m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|<|n|,
∴m=-1,n=-3,
∵抛物线y=x2+bx+c的图象经过点A(m,0),B(0,n),
∴
,
∴
,
∴抛物线解析式为y=x2-2x-3,
(2)令y=0,则x2-2x-3=0,
∴x1=-1,x2=3,
∴C(3,0),
∵y=x2-2x-3=(x-1)2-4,
∴顶点坐标D(1,-4),
过点D作DE⊥y轴,
∵OB=OC=3,
∴BE=DE=1,
∴△BOC和△BED都是等腰直角三角形,
∴∠OBC=∠DBE=45°,
∴∠CBD=90°,
∴△BCD是直角三角形;
(3)如图,

∵B(0,-3),C(3,0),
∴直线BC解析式为y=x-3,
∵点P的横坐标为t,PM⊥x轴,
∴点M的横坐标为t,
∵点P在直线BC上,点M在抛物线上,
∴P(t,t-3),M(t,t2-2t-3),
过点Q作QF⊥PM,
∴△PQF是等腰直角三角形,
∵PQ=
,
∴QF=1,
当点P在点M上方时,即0<t<3时,
PM=t-3-(t2-2t-3)=-t2+3t,
∴S=
PM×QF=
(-t2-3t)=-
t2+
t,
如图3,当点P在点M下方时,即t<0或t>3时,
PM=t2-2t-3-(t-3),
∴S=
PM×QF=
(t2-3t)=
t2-
t
∴x1=-1,x2=-3,
∵m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|<|n|,
∴m=-1,n=-3,
∵抛物线y=x2+bx+c的图象经过点A(m,0),B(0,n),
∴
|
∴
|
∴抛物线解析式为y=x2-2x-3,
(2)令y=0,则x2-2x-3=0,
∴x1=-1,x2=3,
∴C(3,0),
∵y=x2-2x-3=(x-1)2-4,
∴顶点坐标D(1,-4),
过点D作DE⊥y轴,
∵OB=OC=3,
∴BE=DE=1,
∴△BOC和△BED都是等腰直角三角形,
∴∠OBC=∠DBE=45°,
∴∠CBD=90°,
∴△BCD是直角三角形;
(3)如图,

∵B(0,-3),C(3,0),
∴直线BC解析式为y=x-3,
∵点P的横坐标为t,PM⊥x轴,
∴点M的横坐标为t,
∵点P在直线BC上,点M在抛物线上,
∴P(t,t-3),M(t,t2-2t-3),
过点Q作QF⊥PM,
∴△PQF是等腰直角三角形,
∵PQ=
2 |
∴QF=1,
当点P在点M上方时,即0<t<3时,
PM=t-3-(t2-2t-3)=-t2+3t,
∴S=
1 |
2 |
1 |
2 |
1 |
2 |
3 |
2 |
如图3,当点P在点M下方时,即t<0或t>3时,
PM=t2-2t-3-(t-3),
∴S=
1 |
2 |
1 |
2 |
1 |
2 |
3 |
2 |
看了 已知,m,n是一元二次方程x...的网友还看了以下:
若x是有理数,则x2+1一定是()A.等于1B.大于1C.不小于1D.非负数 2020-04-06 …
若x是有理数,则x2+1一定是()A.等于1B.大于1C.不小于1D.非负数 2020-04-06 …
若x是有理数,则x2+1一定是()A.等于1B.大于1C.不小于1D.非负数 2020-04-06 …
已知曲线的参数方程为x=cosθ+sinθy=sin2θ(θ为参数),则曲线的普通方程为()A.x 2020-05-15 …
用matlab画ezplot隐函数,不出曲线syms x2 t;>> ezplot('1.06*( 2020-05-16 …
我要疯哦——求两条曲线y=-x2,4y=-x2及直线y=-1所围成的图形面积有两条曲线y=-x2, 2020-05-16 …
已知点A,B的坐标分别是(-1,0),(1,0),直线AM,BM相交于点M,且直线AM与直线BM的 2020-06-02 …
一直线与抛物线x2=y交与a、b两点,他们的横坐标分别为x1、x2,此直线在x轴上的截距为a,求证 2020-06-14 …
下列判断正确的是()A.带根号的式子一定是二次根式B.式子x2+1一定是二次根式C.式子37是二次根 2020-11-11 …
如图,线段AB的长为1,一线段AB上的点C满足关系式AC的平方=BCxAB,求线段AC的长度二段AC 2020-12-05 …