早教吧作业答案频道 -->数学-->
已知等差数列{an}的公差d>0,设{an}的前n项和为Sn,a1=1,S2•S3=36.(Ⅰ)求d及Sn;(Ⅱ)求m,k(m,k∈N*)的值,使得am+am+1+am+2+…+am+k=65.
题目详情
已知等差数列{an}的公差d>0,设{an}的前n项和为Sn,a1=1,S2•S3=36.
(Ⅰ)求d及Sn;
(Ⅱ)求m,k(m,k∈N*)的值,使得am+am+1+am+2+…+am+k=65.
(Ⅰ)求d及Sn;
(Ⅱ)求m,k(m,k∈N*)的值,使得am+am+1+am+2+…+am+k=65.
▼优质解答
答案和解析
(Ⅰ)由a1=1,S2•S3=36得,
(a1+a2)(a1+a2+a3)=36,
即(2+d)(3+3d)=36,化为d2+3d-10=0,
解得d=2或-5,
又公差d>0,则d=2,
所以Sn=na1+
•d=n2(n∈N*).
(Ⅱ)由(Ⅰ)得,an=1+2(n-1)=2n-1,
由am+am+1+am+2+…+am+k=65得,
=65,
即(k+1)(2m+k-1)=65,
又m,k∈N*,则(k+1)(2m+k-1)=5×13,或(k+1)(2m+k-1)=1×65,
下面分类求
当k+1=5时,2m+k-1=13,解得k=4,m=5;
当k+1=13时,2m+k-1=5,解得k=12,m=-3,故舍去;
当k+1=1时,2m+k-1=65,解得k=0,故舍去;
当k+1=65时,2m+k-1=1,解得k=64,m=-31,故舍去;
综上得,k=4,m=5.
(a1+a2)(a1+a2+a3)=36,
即(2+d)(3+3d)=36,化为d2+3d-10=0,
解得d=2或-5,
又公差d>0,则d=2,
所以Sn=na1+
| n(n−1) |
| 2 |
(Ⅱ)由(Ⅰ)得,an=1+2(n-1)=2n-1,
由am+am+1+am+2+…+am+k=65得,
| (k+1)(am+am+k) |
| 2 |
即(k+1)(2m+k-1)=65,
又m,k∈N*,则(k+1)(2m+k-1)=5×13,或(k+1)(2m+k-1)=1×65,
下面分类求
当k+1=5时,2m+k-1=13,解得k=4,m=5;
当k+1=13时,2m+k-1=5,解得k=12,m=-3,故舍去;
当k+1=1时,2m+k-1=65,解得k=0,故舍去;
当k+1=65时,2m+k-1=1,解得k=64,m=-31,故舍去;
综上得,k=4,m=5.
看了 已知等差数列{an}的公差d...的网友还看了以下:
若a1,a2,a3……a n均为正数.设M=(a1+a2+………+a n-1)(a2+a3+……a 2020-05-16 …
什么是等差数列用通俗的语言讲解一下那个公式,百科是的那个看不懂,ps:是我太笨了等差数列的通项公式 2020-06-26 …
在等差书写{AN}中,已知A1=4,前几项和SN=11,又A1,A7,.A10成等比数列,求项数N 2020-07-09 …
等差数列{an}中,已知a1>0,前n项和Sn满足S7=S13,当n为何值时,Sn最大?设{an} 2020-07-11 …
1.设等差数列{an},an=29,Sn=155,d=3,则n和a1分别为多少?2,已知等差数列{ 2020-07-18 …
设数列{an}的前n项和为Sn,已知2Sn+1=Sn+λ(n∈N*,λ为常数),a1=2,a2=1 2020-07-22 …
已知数列{An}的首项a1=21,前n项·····已知数列{an}的首项a1=21,前n项Sn=a 2020-07-30 …
数列问题在等差数列{an}中,sn是其前n项和,可推知:点P1(a1,s1/1),P2(a2,s2/ 2020-11-27 …
已知数列{an}的前n项和Sn,且a1=a(a为非零常数),当n>=2时,an=2Sn^2/2已知数 2020-12-07 …
设F(x)=1/(2^x+根号2),利用课本推导等差数列前n项和的公式方法求:f(-5)+f(-4) 2020-12-28 …