早教吧作业答案频道 -->数学-->
已知等差数列{an}的公差d>0,设{an}的前n项和为Sn,a1=1,S2•S3=36.(Ⅰ)求d及Sn;(Ⅱ)求m,k(m,k∈N*)的值,使得am+am+1+am+2+…+am+k=65.
题目详情
已知等差数列{an}的公差d>0,设{an}的前n项和为Sn,a1=1,S2•S3=36.
(Ⅰ)求d及Sn;
(Ⅱ)求m,k(m,k∈N*)的值,使得am+am+1+am+2+…+am+k=65.
(Ⅰ)求d及Sn;
(Ⅱ)求m,k(m,k∈N*)的值,使得am+am+1+am+2+…+am+k=65.
▼优质解答
答案和解析
(Ⅰ)由a1=1,S2•S3=36得,
(a1+a2)(a1+a2+a3)=36,
即(2+d)(3+3d)=36,化为d2+3d-10=0,
解得d=2或-5,
又公差d>0,则d=2,
所以Sn=na1+
•d=n2(n∈N*).
(Ⅱ)由(Ⅰ)得,an=1+2(n-1)=2n-1,
由am+am+1+am+2+…+am+k=65得,
=65,
即(k+1)(2m+k-1)=65,
又m,k∈N*,则(k+1)(2m+k-1)=5×13,或(k+1)(2m+k-1)=1×65,
下面分类求
当k+1=5时,2m+k-1=13,解得k=4,m=5;
当k+1=13时,2m+k-1=5,解得k=12,m=-3,故舍去;
当k+1=1时,2m+k-1=65,解得k=0,故舍去;
当k+1=65时,2m+k-1=1,解得k=64,m=-31,故舍去;
综上得,k=4,m=5.
(a1+a2)(a1+a2+a3)=36,
即(2+d)(3+3d)=36,化为d2+3d-10=0,
解得d=2或-5,
又公差d>0,则d=2,
所以Sn=na1+
n(n−1) |
2 |
(Ⅱ)由(Ⅰ)得,an=1+2(n-1)=2n-1,
由am+am+1+am+2+…+am+k=65得,
(k+1)(am+am+k) |
2 |
即(k+1)(2m+k-1)=65,
又m,k∈N*,则(k+1)(2m+k-1)=5×13,或(k+1)(2m+k-1)=1×65,
下面分类求
当k+1=5时,2m+k-1=13,解得k=4,m=5;
当k+1=13时,2m+k-1=5,解得k=12,m=-3,故舍去;
当k+1=1时,2m+k-1=65,解得k=0,故舍去;
当k+1=65时,2m+k-1=1,解得k=64,m=-31,故舍去;
综上得,k=4,m=5.
看了 已知等差数列{an}的公差d...的网友还看了以下:
已知各项均不为零的数列{an}的前n项和为Sn,且Sn=ana(n+1)/2,其中a1=1.若不等 2020-05-13 …
1.已知数列{an}中,a(1)=1,a(2)=6,a(n+2)=a(n+1)-a(n),则a(2 2020-05-14 …
数列证明题(在线等,完成后在多给分)下面的a(1),a(2),.a(n)都是数组的项.a(n)*2 2020-06-06 …
已知数列{an}为等差数列,a1,a2,a3是展开式(1+1/2x)^m(m≥2,m为整数)的前项 2020-07-09 …
已知正项数列{an}中a1=2an^-an*a(n-1)-2n*a(n-1)-4n^2=0(n>= 2020-07-16 …
下面一道有趣的数列大题,大家有空看下吧:数列{an}恒满足等式a(n+1)=1/2an+√3/2× 2020-07-23 …
已知{an}是正项无穷数列,满足1/(an*a(n+1))+1/(a(n+1)*a(n+2))+1 2020-08-02 …
1.在等比数列{an}中,a5*a7=6,a2+a10=5,则a18/a10=?2.在数列{an}中 2020-10-31 …
数列{an}满足a(1)=1,a(n+1)-3a(n)=3^n数列{bn}满足b(n)=3^(-n) 2020-11-20 …
若Sn是数列{a(n)}的前几项和,且Sn=n^2,则{a(n)}是{a(n)}是什么数列:A.等比 2020-11-20 …