早教吧作业答案频道 -->数学-->
1/(1+1^2+1^4)+2/(1+2^2+2^4)+3/(1+3^2+3^4)+……100/(1+100^2+100^4)
题目详情
1/(1+1^2+1^4)+2/(1+2^2+2^4)+3/(1+3^2+3^4)+……100/(1+100^2+100^4)
▼优质解答
答案和解析
1/(1+1^2+1^4)分母是公比为1的等比数列
2/(1+2^2+2^4分母)是公比为2^2的等差数列
.
n/(1+n^2+n^4)分母是公比为n^2的等比数列
令分母为S
S=1*(1-n^6)/(1-n^2)=(1-n^3)(1+n^3)/(1+n)(1-n)=(1-n)(n^2+n+1)(1+n)(n^2-n+1)/(1-n)(1+n)=(n^2-n+1)(n^2+n+1)(公比不为1的等比数列求和公式,该数列只有三项)
分子除以分母即n/s=n/(n^2-n+1)(n^2+n+1)=(1/2)*[1/(n^2-n+1)-1/(n^2+n+1)](通项)
1/(1+1^2+1^4)+2/(1+2^2+2^4)+3/(1+3^2+3^4)+……100/(1+100^2+100^4)
=(1/2)*{(1-1/3)+(1/3-1/7)+(1/7-1/13)+.[1/(100^2-100+1)-1/(100^2+100+1)]}
=(1/2)*[1-1/(100^2+100+1)]
=(1/2)*(1-1/10101)
=(1/2)*(10100/10101)
=5050/10101
2/(1+2^2+2^4分母)是公比为2^2的等差数列
.
n/(1+n^2+n^4)分母是公比为n^2的等比数列
令分母为S
S=1*(1-n^6)/(1-n^2)=(1-n^3)(1+n^3)/(1+n)(1-n)=(1-n)(n^2+n+1)(1+n)(n^2-n+1)/(1-n)(1+n)=(n^2-n+1)(n^2+n+1)(公比不为1的等比数列求和公式,该数列只有三项)
分子除以分母即n/s=n/(n^2-n+1)(n^2+n+1)=(1/2)*[1/(n^2-n+1)-1/(n^2+n+1)](通项)
1/(1+1^2+1^4)+2/(1+2^2+2^4)+3/(1+3^2+3^4)+……100/(1+100^2+100^4)
=(1/2)*{(1-1/3)+(1/3-1/7)+(1/7-1/13)+.[1/(100^2-100+1)-1/(100^2+100+1)]}
=(1/2)*[1-1/(100^2+100+1)]
=(1/2)*(1-1/10101)
=(1/2)*(10100/10101)
=5050/10101
看了 1/(1+1^2+1^4)+...的网友还看了以下:
A1(1,1)A2(2,-4)A3(3,4)A4(4,-2)A5(5,7)A6(6,-3/4)A7 2020-04-07 …
1,7/8÷5/6×4/21=1/5.2,4/25×(3/4+5/12)=14/75.3,2/7× 2020-07-18 …
1.规定②=1*2*3③=2*3*4④=3*4*5⑤=4*5*6.以次类推如果⑧分之一减⑨分之一= 2020-07-29 …
1、1/(1+√2)+1/(√2+√3)+1/(√3+√4)+1/(√4+√5)+1/(√5+√6) 2020-10-31 …
小明在计算3(4+1)(4∧2+1)时,把3写成4-1后,得3(4+1)(4^2+1)=(4-1)( 2020-11-07 …
某同学在计算3(4+1)(4^2+1)时,把3写成(4-1)后,得3(4+1)(4^2+1)=(4- 2020-11-07 …
分析研究:先阅读下面的文字,然后完成后面的题目:著名数学家高斯10岁时老师出了一道数学题:1+2+3 2020-11-14 …
54张扑克牌任意选17张,有多少种组合.我只会算54个数选17个数,但是扑克牌,有重复的牌,怎么算啊 2020-12-02 …
观察下列算式:1-1/2的平方=1-1/4=3/4=1/2*3/2;1-1/3的平方=1-1/9=8 2020-12-23 …
观察下列算式:1-1/2的平方=1-1/4=3/4=1/2*3/2;1-1/3的平方=1-1/9=8 2020-12-23 …