早教吧作业答案频道 -->数学-->
如图,正方形ABCD的边长为18,在BA上有点P,且BP=6将正方形折叠,使点D与点P重合,折痕为EF求三角形EBP周长
题目详情
如图,正方形ABCD的边长为18,在BA上有点P,且BP=6将正方形折叠,使点D与点P重合,折痕为EF求三角形EBP周长
▼优质解答
答案和解析
如果点E在CD上,则三角形EBP的面积=6×18÷2=54.(因为太简单,不可能是为种情况)
如果点E在AD上,则由折叠可知,PE=DE,AE=AD-DE=18-PE.
由勾股定理有,PE平方=AP平方+AE平方,即 PE平方=12平方+(18-PE)平方,
所以,PE=13,AE=18-13=5,
所以,三角形EBP的面积=6×5÷2=15.
如果点E在AD上,则由折叠可知,PE=DE,AE=AD-DE=18-PE.
由勾股定理有,PE平方=AP平方+AE平方,即 PE平方=12平方+(18-PE)平方,
所以,PE=13,AE=18-13=5,
所以,三角形EBP的面积=6×5÷2=15.
看了 如图,正方形ABCD的边长为...的网友还看了以下:
△ABC的顶点坐标写在同一坐标系中画出的直线M:X=-1,△ABC对称的线M△A'B'C',如果P 2020-05-19 …
已知点P(x0,y0)是圆C:(x-2)2+(y-2)2=8内一点(C为圆心),过P点的动弦AB. 2020-06-09 …
如图1,抛物线y=-x2+2bx+c(b>0)与y轴交于点C,点P为抛物线顶点,分别作点P,C关于 2020-06-12 …
1.y''+(y')^2+1=0求通解,我想问这个使用y''=f(x,y')型的算还是用y''=f 2020-06-25 …
关于概率的问题P(W|C)的求解如下:P(W|C)=P(W)P(C|W)/P(C)其中,P(C)是 2020-07-30 …
已知∠AOB=60°,半径为3cm的⊙P沿边OA从右向左平行移动,与边OA相切的切点记为点C.(1 2020-07-31 …
二阶微分方程求解题目2xy''=y'令p=y',则y''=p'=>2xp'=p=>2*dp/p=dx 2020-11-16 …
纠结的数学排列组合从10个球里面取两个球,应该是C(10,2)还是C(10,1)C(9,1)还是C( 2020-12-07 …
已知火车站托运行李的费用C和托运行李的重量P(千克)(P为整数)的对应关系如下表则C与P的对应关系为 2020-12-15 …
已知x,,x+y=p,xy=s,有下列命题其中正确命题的序号是A如果s是定值,那么当且仅当x=y时p 2020-12-31 …