早教吧作业答案频道 -->数学-->
如图,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(Ⅰ)求证:BE=DE;(Ⅱ)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.
题目详情
如图,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.

(Ⅰ)求证:BE=DE;
(Ⅱ)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.

(Ⅰ)求证:BE=DE;
(Ⅱ)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.
▼优质解答
答案和解析
证明:(I)设BD中点为O,连接OC,OE,则由BC=CD知,CO⊥BD,
又已知CE⊥BD,EC∩CO=C,
所以BD⊥平面OCE.
所以BD⊥OE,即OE是BD的垂直平分线,
所以BE=DE.
(II)证法一:
取AB中点N,连接MN,DN,

∵M是AE的中点,
∴MN∥BE,又MN⊄平面BEC,BE⊂平面BEC,
∴MN∥平面BEC,
∵△ABD是等边三角形,
∴∠BDN=30°,又CB=CD,∠BCD=120°,
∴∠CBD=30°,
∴ND∥BC,
又DN⊄平面BEC,BC⊂平面BEC,
∴DN∥平面BEC,又MN∩DN=N,故平面DMN∥平面BEC,又DM⊂平面DMN,
∴DM∥平面BEC
证法二:延长AD,BC交于点F,连接EF,

∵CB=CD,∠BCD=120°,
∴∠CBD=30°,
∵△ABD是等边三角形,
∴∠BAD=60°,∠ABC=90°,因此∠AFB=30°,
∴AB=
AF,
又AB=AD,
∴D为线段AF的中点,连接DM,DM∥EF,又DM⊄平面BEC,EF⊂平面BEC,
∴DM∥平面BEC
又已知CE⊥BD,EC∩CO=C,
所以BD⊥平面OCE.

所以BD⊥OE,即OE是BD的垂直平分线,
所以BE=DE.
(II)证法一:
取AB中点N,连接MN,DN,

∵M是AE的中点,
∴MN∥BE,又MN⊄平面BEC,BE⊂平面BEC,
∴MN∥平面BEC,
∵△ABD是等边三角形,
∴∠BDN=30°,又CB=CD,∠BCD=120°,
∴∠CBD=30°,
∴ND∥BC,
又DN⊄平面BEC,BC⊂平面BEC,
∴DN∥平面BEC,又MN∩DN=N,故平面DMN∥平面BEC,又DM⊂平面DMN,
∴DM∥平面BEC
证法二:延长AD,BC交于点F,连接EF,

∵CB=CD,∠BCD=120°,
∴∠CBD=30°,
∵△ABD是等边三角形,
∴∠BAD=60°,∠ABC=90°,因此∠AFB=30°,
∴AB=
1 |
2 |
又AB=AD,
∴D为线段AF的中点,连接DM,DM∥EF,又DM⊄平面BEC,EF⊂平面BEC,
∴DM∥平面BEC
看了 如图,几何体E-ABCD是四...的网友还看了以下:
如图,OB是以(O,a)为圆心,a为半径的⊙O1的弦,过B点作⊙O1的切线,P为劣弧OB上的任一点 2020-06-11 …
如图,D,E是D,A,E三点所在直线m上的两个动点(D,A,E三点互不相重合),且三角形ABF和三 2020-06-13 …
英语发音问题listened和danced这两个单词,结尾应该发/t/还是/d/./m//n/都是 2020-06-13 …
1.ABCDE五人参加50米跑步比赛,对于冠军是谁,甲乙丙丁四人猜测如下:甲说:冠军不是A就是B. 2020-06-15 …
如图是由边长为10匣米、6厘米的正方形和一个长为4厘米的长方形拼成的,线段MN把它们各分成两部分. 2020-06-21 …
在英语当中,哪两个字母的出现频率最高?A(e.t)B(t.h)C(h.m)D(m.e) 2020-07-30 …
如图,在△ABC中,AB=3cm,AC=4cm,BC=5cm,M是BC边上的动点,MD⊥AB,ME 2020-07-30 …
如图,△ABC的内切圆I在边AB,BC,CA上的切点分别是D,E,F,直线EF与直线AI,BI,D 2020-07-31 …
如图,⊙O是△ABC的内切圆,切点分别是D、E、F,已知∠A=100°,∠C=30°,则∠DFE的 2020-08-01 …
如图,已知△ABC的三个顶点分别为A(-4,1)、B(-1,-1)、C(-3,2).(1)请在图中 2020-08-02 …