早教吧作业答案频道 -->数学-->
已知四边形ABCD中,∠ABC=120°∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E已知四边形ABCD中,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E,
题目详情
已知四边形ABCD中,∠ABC=120°∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E
已知四边形ABCD中,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E,F.
当∠MBN绕B点旋转到AE=CF时(如图1),易证AE+CF=EF;
当∠MBN绕B点旋转到AE≠CF时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE,CF,EF又有怎样的数量关系?
注意:图2请用截长的方法证明,图3请用补短的方法证明
注意:图2请用截长的方法证明,图3请用补短的方法证明
已知四边形ABCD中,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E,F.
当∠MBN绕B点旋转到AE=CF时(如图1),易证AE+CF=EF;
当∠MBN绕B点旋转到AE≠CF时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE,CF,EF又有怎样的数量关系?
注意:图2请用截长的方法证明,图3请用补短的方法证明
注意:图2请用截长的方法证明,图3请用补短的方法证明
▼优质解答
答案和解析
∵AB⊥AD,BC⊥CD,AB=BC,AE=CF,
∴△ABE≌CBF(SAS);
∴∠ABE=∠CBF,BE=BF;
∵∠ABC=120°,∠MBN=60°,
∴∠ABE=∠CBF=30°,△BEF为等边三角形;
∴AE= BE,CF= BF;
∴AE+CF= BE+ BF=BE=EF;
图2成立,图3不成立.
证明图2.
延长DC至点K,使CK=AE,连接BK,
则△BAE≌△BCK,
∴BE=BK,∠ABE=∠KBC,
∵∠FBE=60°,∠ABC=120°,
∴∠FBC+∠ABE=60°,
∴∠FBC+∠KBC=60°,
∴∠KBF=∠FBE=60°,
∴△KBF≌△EBF,
∴KF=EF,
∴KC+CF=EF,
即AE+CF=EF.
图3不成立,AE、CF、EF的关系是AE-CF=EF.
∴△ABE≌CBF(SAS);
∴∠ABE=∠CBF,BE=BF;
∵∠ABC=120°,∠MBN=60°,
∴∠ABE=∠CBF=30°,△BEF为等边三角形;
∴AE= BE,CF= BF;
∴AE+CF= BE+ BF=BE=EF;
图2成立,图3不成立.
证明图2.
延长DC至点K,使CK=AE,连接BK,
则△BAE≌△BCK,
∴BE=BK,∠ABE=∠KBC,
∵∠FBE=60°,∠ABC=120°,
∴∠FBC+∠ABE=60°,
∴∠FBC+∠KBC=60°,
∴∠KBF=∠FBE=60°,
∴△KBF≌△EBF,
∴KF=EF,
∴KC+CF=EF,
即AE+CF=EF.
图3不成立,AE、CF、EF的关系是AE-CF=EF.
看了 已知四边形ABCD中,∠AB...的网友还看了以下:
在直角坐标系中,M为x轴正半轴上一点,⊙M交x轴于A、B两点,交y轴于C、D两点,P为AB延长线上 2020-05-17 …
如图,在直角坐标系xOy中,直线AB交x轴于A(1,0),交y轴负半轴于B(0,-5),C为x轴正 2020-06-14 …
如图1,B(-1,0),D(0,2),经过点C(3,0)的直线EC交直线BD于A,交y轴于E,使A 2020-06-23 …
如图,P是菱形ABC尸对角线BD上一点,连接CP并延长,交AD于E,交BA延长线于F.(1)求证如 2020-07-16 …
(2014•抚州)如图,在平面直角坐标系中,⊙P经过x轴上一点C,与y轴分别相交于A、B两点,连接 2020-07-26 …
设椭圆x2a2+y2b2=1(a>b>0)的左焦点为F,短轴上端点为B,连接BF并延长交椭圆于点A 2020-07-30 …
如图1已知在圆O中,点C为劣弧AB的中点,连接AC并延长至D,使CD=CA,连接DB并延长交圆O如 2020-07-31 …
如图,在平面直角坐标系中,△ABC内接于⊙P,AB是⊙P的直径,A(-1,0)C(3,22),BC 2020-08-03 …
(2013•十堰)已知抛物线y=x2-2x+c与x轴交于A.B两点,与y轴交于C点,抛物线的顶点为D 2020-11-12 …
已知,如图,直径为OA的圆心M与X轴交于点O,A,点B,C把弧OA分为三等份,连接MC并延长交于Y轴 2020-11-27 …