早教吧作业答案频道 -->其他-->
已知导数函数和原函数关系式怎么解得原函数表达式已知导函数和原函数关系式怎么求得原函数表达式?如①f'(x)=3f2(x),f后面的2是平方。又如②f'(x)=f(x)+ex,ex是指数函数。以这两题为例请
题目详情
已知导数函数和原函数关系式怎么解得原函数表达式
已知导函数和原函数关系式怎么求得原函数表达式?如①f'(x)=3f2(x),f后面的2是平方。又如②f'(x)=f(x)+ex,ex是指数函数。
以这两题为例请给出此类题目求解方法。谢谢!不要说你直接可以看出来,我是看不出来啊。
1楼的朋友,用积分我知道,但是这样还是没求出f(x)表达式啊,右边∫里还含有f(x)。我说下结果吧:①-1/(3x+C)②ex(x+C)。问题是这结果怎么来的啊?
已知导函数和原函数关系式怎么求得原函数表达式?如①f'(x)=3f2(x),f后面的2是平方。又如②f'(x)=f(x)+ex,ex是指数函数。
以这两题为例请给出此类题目求解方法。谢谢!不要说你直接可以看出来,我是看不出来啊。
1楼的朋友,用积分我知道,但是这样还是没求出f(x)表达式啊,右边∫里还含有f(x)。我说下结果吧:①-1/(3x+C)②ex(x+C)。问题是这结果怎么来的啊?
▼优质解答
答案和解析
都是典型的微分方程形式.
1.典型的齐次方程,令y=f(x),那么有y'=3y²,这种方程的特点是对称,可通过恒等变形的形式,将x和y分离.
我们有:dy/dx=3y²,于是dy/3y²=dx,两边同时积分
∫dy/3y²=∫dx
那么x=-1/3y,变形得:y=f(x)=-1/(3x+c)
2.这是一个一阶线性微分方程,且系数为常系数.这种方程的通式为:
dy/dx+P(x)y=Q(x),其中P(x),Q(x)是有关x的方程,下面说说这种方程的解法.
(1)假设Q(x)=0,那么有dy/dx=-P(x)
这个方程的形式就是上面所说的齐次方程,可以解得:
ln|y|=-∫P(x)dx+C1
于是:y=Cexp{-∫P(x)dx},其中C=±e^C1,exp{}表示e的{}次幂
(2)由前面的分析,y=Cexp{-∫P(x)dx},我们将常数C换成一个关于x的函数u(x),并令u=u(x)
那么y=uexp{-∫P(x)dx},此时dy/dx=u'exp{-∫P(x)dx}-uP(x)exp{-∫P(x)dx}
对于dy/dx+P(x)y=Q(x),有:
u'exp{-∫P(x)dx}-uP(x)exp{-∫P(x)dx}+P(x)uexp{-∫P(x)dx}=Q(x)
即:u'exp{-∫P(x)dx}=Q(x),u'=Q(x)exp{∫P(x)dx},
两边积分:u=∫Q(x)exp{∫P(x)dx}dx+C
所以:y=exp{-∫P(x)dx}[∫Q(x)exp{∫P(x)dx}+C]=Cexp{-∫P(x)dx}+exp{-∫P(x)dx}∫Q(x)exp{∫P(x)dx}
上式即为答案.式中,前半部分为(1)的解,称为通解;后半部分称为特解.
对于本题,你可以直接代入结论来求,当然也有特殊的方法.因为通解是很容易求的,只要令Q(x)=0,就是一个典型的齐次方程,分离变量后两边积分就可以了,但特解是很难求的.其实对于特解,是有一种简便的方法可求的,即D=d/dx的形式,这些说起原理就长了..
求特解:
针对多项式的方程f(x)=ax^m+bx^(m-1)+...+cx+d
令D=d/dx,可知特解为y={1/F(D)}*[ax^m+bx^(m-1)+...+cx+d]
例:求2y''-y'+3y=e^2x的特解.
令D=d/dx,于是y''=D²,y'=D,有:(2D²-D+3)y=e^2x
特解为y=[1/(2D²-D+3)]*e^2x
针对幂函数,我们直接令幂函数的指数为D,即令e^2x的指数2为D,可得特解y=1/9*e^2x
因此本题,特解求法:(D-1)y=e^x,y=1/(D-1)e^x.令D=1.(有这么一个规定,若代入后,分母为0,那么就对分母求导,且在分子上加一个x),那么:
y=x/(-1)e^x=-xe^x
通解:y'=y,有dy/y=dx,有x=ln|y|,y=±e^x
方程的解为特解与通解之和,那么y=-xe^x±e^x=e^x(x+C)
1.典型的齐次方程,令y=f(x),那么有y'=3y²,这种方程的特点是对称,可通过恒等变形的形式,将x和y分离.
我们有:dy/dx=3y²,于是dy/3y²=dx,两边同时积分
∫dy/3y²=∫dx
那么x=-1/3y,变形得:y=f(x)=-1/(3x+c)
2.这是一个一阶线性微分方程,且系数为常系数.这种方程的通式为:
dy/dx+P(x)y=Q(x),其中P(x),Q(x)是有关x的方程,下面说说这种方程的解法.
(1)假设Q(x)=0,那么有dy/dx=-P(x)
这个方程的形式就是上面所说的齐次方程,可以解得:
ln|y|=-∫P(x)dx+C1
于是:y=Cexp{-∫P(x)dx},其中C=±e^C1,exp{}表示e的{}次幂
(2)由前面的分析,y=Cexp{-∫P(x)dx},我们将常数C换成一个关于x的函数u(x),并令u=u(x)
那么y=uexp{-∫P(x)dx},此时dy/dx=u'exp{-∫P(x)dx}-uP(x)exp{-∫P(x)dx}
对于dy/dx+P(x)y=Q(x),有:
u'exp{-∫P(x)dx}-uP(x)exp{-∫P(x)dx}+P(x)uexp{-∫P(x)dx}=Q(x)
即:u'exp{-∫P(x)dx}=Q(x),u'=Q(x)exp{∫P(x)dx},
两边积分:u=∫Q(x)exp{∫P(x)dx}dx+C
所以:y=exp{-∫P(x)dx}[∫Q(x)exp{∫P(x)dx}+C]=Cexp{-∫P(x)dx}+exp{-∫P(x)dx}∫Q(x)exp{∫P(x)dx}
上式即为答案.式中,前半部分为(1)的解,称为通解;后半部分称为特解.
对于本题,你可以直接代入结论来求,当然也有特殊的方法.因为通解是很容易求的,只要令Q(x)=0,就是一个典型的齐次方程,分离变量后两边积分就可以了,但特解是很难求的.其实对于特解,是有一种简便的方法可求的,即D=d/dx的形式,这些说起原理就长了..
求特解:
针对多项式的方程f(x)=ax^m+bx^(m-1)+...+cx+d
令D=d/dx,可知特解为y={1/F(D)}*[ax^m+bx^(m-1)+...+cx+d]
例:求2y''-y'+3y=e^2x的特解.
令D=d/dx,于是y''=D²,y'=D,有:(2D²-D+3)y=e^2x
特解为y=[1/(2D²-D+3)]*e^2x
针对幂函数,我们直接令幂函数的指数为D,即令e^2x的指数2为D,可得特解y=1/9*e^2x
因此本题,特解求法:(D-1)y=e^x,y=1/(D-1)e^x.令D=1.(有这么一个规定,若代入后,分母为0,那么就对分母求导,且在分子上加一个x),那么:
y=x/(-1)e^x=-xe^x
通解:y'=y,有dy/y=dx,有x=ln|y|,y=±e^x
方程的解为特解与通解之和,那么y=-xe^x±e^x=e^x(x+C)
看了 已知导数函数和原函数关系式怎...的网友还看了以下:
导数是复合函数,如何求原函数比如导数为lnx/x原函数或者根号下1-cosx 2020-04-27 …
请用简单易懂的语言解释一下积分曲线,可以简单理解为原函数的图像吗? 2020-05-17 …
一个函数的导函数最后求出来为sin(1/x)原函数是连续的,为什么在x=0处导数存在但不连续?什么 2020-05-23 …
求x/√(1+x²)原函数在线等!大感谢! 2020-06-06 …
导函数是e/x,原函数是什么f'(x)=e/x,求f(x). 2020-06-12 …
3^xe^x原函数…求解 2020-06-14 …
已知导数函数和原函数关系式怎么解得原函数表达式已知导函数和原函数关系式怎么求得原函数表达式?如①f 2020-07-07 …
1/x原函数可以是In(ax)为什么不定积分=Inabs(x)不能是Inabs(ax) 2020-11-04 …
请问:若F(x)=f'(x)+2f(x),则F(x)的原函数是什么?解出原函数即可,当然,欢迎写出思 2020-11-29 …
matlab中的平均值clear%清除变量dx=0.01*2*pi;%间隔x=0:dx:2*pi;% 2020-12-31 …