早教吧作业答案频道 -->数学-->
求解一道初等数论题求证当p大于3时(p-1)![1+1/2+1/3+.+1/(p-1)]能被p的平方整除,p是质数
题目详情
求解一道初等数论题
求证当p大于3时 (p-1)![1+1/2+1/3+.+1/(p-1)]能被p的平方整除,p是质数
求证当p大于3时 (p-1)![1+1/2+1/3+.+1/(p-1)]能被p的平方整除,p是质数
▼优质解答
答案和解析
符号说明:
==指同余号≡.
a|:ba==0 mod bb|a
题:X=1+1/2+1/3+.+1/(p-1),求证(p-1)!X|:pp,p素>3
证:
X=(1+1/(p-1)) + (1/2+1/(p-2))+...+(...)
=p(1/(p-1)+1/(2(p-2))+...)
=p*Y
故只须证(p-1)!Y|:p
(p-1)!Y=sum(p-1)!/(i(p-i)),i=1,...,(p-1)/2
设 _i==(p-1)!/(i(p-i)) mod p (###)
由wilson定理:(p-1)!==-1 mod p
得 ii* _i==1 mod p
(这是ii是指i^2,_i见###式的指定)
依二次剩余相关理论,_i是p的二次剩余(易证,略)
并且,当i取遍1,2,...,(p-1)/2时,_i取遍p的二次剩余(易证,略).
显然二次剩余是成对的:
如果k是p的二次剩余,p-k必定也是.
从而:sum(_i)==sum(p的所有二次剩余)
==1+2^2+3^2+...+((p-1)/2)^2
=((p-1)/2)((p-1)/2+1)(2*((p-1)/2)+1)/6
=(p-1)/2*(p+1)/2*p/6
当p是6的约数,即p=2,3时,代入p值可得知上式不能被p整除.
在其他情况下,显然sum (_i)==0 mod p
从而原命题得证.
==指同余号≡.
a|:ba==0 mod bb|a
题:X=1+1/2+1/3+.+1/(p-1),求证(p-1)!X|:pp,p素>3
证:
X=(1+1/(p-1)) + (1/2+1/(p-2))+...+(...)
=p(1/(p-1)+1/(2(p-2))+...)
=p*Y
故只须证(p-1)!Y|:p
(p-1)!Y=sum(p-1)!/(i(p-i)),i=1,...,(p-1)/2
设 _i==(p-1)!/(i(p-i)) mod p (###)
由wilson定理:(p-1)!==-1 mod p
得 ii* _i==1 mod p
(这是ii是指i^2,_i见###式的指定)
依二次剩余相关理论,_i是p的二次剩余(易证,略)
并且,当i取遍1,2,...,(p-1)/2时,_i取遍p的二次剩余(易证,略).
显然二次剩余是成对的:
如果k是p的二次剩余,p-k必定也是.
从而:sum(_i)==sum(p的所有二次剩余)
==1+2^2+3^2+...+((p-1)/2)^2
=((p-1)/2)((p-1)/2+1)(2*((p-1)/2)+1)/6
=(p-1)/2*(p+1)/2*p/6
当p是6的约数,即p=2,3时,代入p值可得知上式不能被p整除.
在其他情况下,显然sum (_i)==0 mod p
从而原命题得证.
看了 求解一道初等数论题求证当p大...的网友还看了以下:
数学问题快以知在等式√(开根)ax+d÷√cx+d=s,a,b,c,d为有理数,x为无理数(1)当 2020-04-08 …
设函数f(x)=(x-1)²+blnx,其中b为常数1.当b>1/2时,判断函数f(x)在定义域上 2020-05-13 …
在A/6中,A是一个不为0的自然数.1.当A为何时,A/6的倒数大于他本身?2.当A为何时,A/6 2020-05-14 …
在7分之A中,A是一个不为0的数.1.当A为何值时,7分之A小于他本身吗是还是不是2.当A为何值时 2020-05-14 …
急1.求使函数f(x)=100|(x-1)(x-2)|-kx有四个不同零点的最大正整数k2.设函数 2020-05-14 …
一道初二一次函数题!设关于一次函数y=a1x+b1与y=a2x+b2,则称函数y=m(a1x+b1 2020-05-21 …
已知在数列{an}中,a1=3,an+1=can+d(c,d是常数)(1)当c=1,d=-1时求数 2020-07-30 …
已知函数y=(m-2)x+(m-3)(m为常数)(1)当m为何值时,该函数是一次函数?(2)当m为 2020-08-03 …
你能帮我解一下此题吗.题目如下已知数列an满足:a1=1,a(n+1)=1/2an=n,n为奇数a( 2020-11-19 …
在11分之a中,a是非零自然数.1.当a()时,11分之a能化成整数.2.当a()时,11分之a等于 2020-12-07 …