早教吧作业答案频道 -->数学-->
如图1,A为轴负半轴上一点,点B为x轴正半轴上一点,C(0,-2),D(-3,-2).(1)求三角形BCD的面积(2)如图2,若AC垂直BC,作角CBA的平分线交co于p,交ca于q,判断角cpq与角CQO的大小关系,并证明你的结论.(3)如图3
题目详情
如图1,A为轴负半轴上一点,点B为x轴正半轴上一点,C(0,-2),D(-3,-2).(1)求三角形BCD的面积
(2)如图2,若AC垂直BC,作角CBA 的平分线交co于p,交ca于q,判断角cpq与角CQO的大小关系,并证明你的结论.
(3)如图3,若角ADC=角DAC,点b在x轴正半轴上任意运动,角ACB的平分线CE交DA的延长线于点E,在B点的运动过程中,角E/角ABC的值是否变化?若不变,求出其值;若变化,请说明理由.
(2)如图2,若AC垂直BC,作角CBA 的平分线交co于p,交ca于q,判断角cpq与角CQO的大小关系,并证明你的结论.
(3)如图3,若角ADC=角DAC,点b在x轴正半轴上任意运动,角ACB的平分线CE交DA的延长线于点E,在B点的运动过程中,角E/角ABC的值是否变化?若不变,求出其值;若变化,请说明理由.
▼优质解答
答案和解析
CD=│0-(-3)│=3
△BCD△BCD边CD的高=│0-(-2)│=2
∴△BCD的面积=(1/2)×3×2=3
⑵ ∠CPQ=∠CQP
证:∵BQ为∠CBA的平分线 ∴∠CBQ=∠ABQ
∵AC⊥BC,∴∠A=90°-∠B
又∵∠BCO=90°-∠B ∴∠A=∠BCO
∵∠CPQ=∠CBQ+∠BCO
∠CQP=∠ABQ+∠A
∴∠CPQ=∠CQP
不变化,其值为1/2
设∠ADC=∠DAC=α,∠ACE=β
∵CE为∠ACB的平分线 ∴∠ACB=2∠ACE=2β
∠E=∠ADC-∠ACE=α-β
由题显然有,AB∥CD
∴∠ABC=180°-∠BCD=180°-(∠ACD+∠ACB)
=180°-[(180°-2α)+2β]=2(α-β)
∴∠E/∠ABC=(α-β)/[2(α-β)]=1/2
△BCD△BCD边CD的高=│0-(-2)│=2
∴△BCD的面积=(1/2)×3×2=3
⑵ ∠CPQ=∠CQP
证:∵BQ为∠CBA的平分线 ∴∠CBQ=∠ABQ
∵AC⊥BC,∴∠A=90°-∠B
又∵∠BCO=90°-∠B ∴∠A=∠BCO
∵∠CPQ=∠CBQ+∠BCO
∠CQP=∠ABQ+∠A
∴∠CPQ=∠CQP
不变化,其值为1/2
设∠ADC=∠DAC=α,∠ACE=β
∵CE为∠ACB的平分线 ∴∠ACB=2∠ACE=2β
∠E=∠ADC-∠ACE=α-β
由题显然有,AB∥CD
∴∠ABC=180°-∠BCD=180°-(∠ACD+∠ACB)
=180°-[(180°-2α)+2β]=2(α-β)
∴∠E/∠ABC=(α-β)/[2(α-β)]=1/2
看了 如图1,A为轴负半轴上一点,...的网友还看了以下:
已知曲线C的极坐标方程ρ=2,给定两点P(0,π/2),Q(-2,π),则有()A.P在曲线C上, 2020-05-15 …
电容器带电量问题金属球A与同心球壳B组成电容器,(B半径比A大,在A外)球A上带电荷q,壳B上带Q 2020-05-16 …
下列公式为永真公式的是(14)。A.(P∨Q)→RB.p→(P∨Q)C.(P∨Q)→(P∧Q)D.( 2020-05-26 …
「初中几何题」图形是直角梯形ABCD.左上角是A点,左下为B点.∠A、∠B为直角.右上是D点,右下 2020-06-04 …
(2013•杨浦区二模)如图1,已知⊙O的半径长为3,点A是⊙O上一定点,点P为⊙O上不同于点A的 2020-06-15 …
如图示是氦原子核在固定的正电荷Q作用下的运动轨迹,M、N、P、Q是轨迹上的四点,图中所标出的氦原子 2020-07-29 …
在显微镜下,看到的物象是“b”且偏右上方;则实物的图象是什么?且将物象移动到视野中央,移动方向应是什 2020-11-05 …
半径为R的金属球与地连接.在与球心O相距d=2R处有一电荷为q的点电荷.如图10-6所示,设地的电势 2021-01-09 …
如图所示的实例中,目的是为了增大压强的是()A.书包的背带做的很宽B.盲道有凸起的棱和圆点组成C.火 2021-01-15 …
如图所示的实例中,目的是为了增大压强的是()A.书包的背带做得很宽B.盲道由凸起的棱和圆点组成C.火 2021-01-15 …