早教吧作业答案频道 -->数学-->
如图,矩形ABCD中,AB=4,AD=8,点E,F分别在BC,CD边上,将△CEF沿EF翻折,点C的对应点为M.(1)如图1,当CE=5,M点落在AD边上时,求MD的长.(2)如图2,若点F是CD的中点,点E在线段BC上运动
题目详情
如图,矩形ABCD中,AB=4,AD=8,点E,F分别在BC,CD边上,将△CEF沿EF翻折,点C的对应点为M.
(1)如图1,当CE=5,M点落在AD边上时,求MD的长.
(2)如图2,若点F是CD的中点,点E在线段BC上运动,将△CEF沿EF折叠,连接BM,若△BME是直角三角形,求此时CE的长.

(1)如图1,当CE=5,M点落在AD边上时,求MD的长.
(2)如图2,若点F是CD的中点,点E在线段BC上运动,将△CEF沿EF折叠,连接BM,若△BME是直角三角形,求此时CE的长.

▼优质解答
答案和解析
(1)如图1,作EN⊥AD于点N,
∴∠ANE=∠ENM=90°.
∵四边形ABCD是矩形,
∴∠A=∠B=∠C=∠D=90°,AB=CD=4,AD=BC=8,
∴∠A=∠B=∠ANE=90°,
∴AB=NE=4,AN=BE.
∵EC=5,
∴BE=3,
∴AN=3.
∵△EFC与△EFM关于直线EF对称,
∴△EFC≌△EFM,
∴EC=EM=5.
在Rt△EMN中,由勾股定理,得MN=3,
∴MD=8-3-3=2.
答:MD的长为2;
(2)①如图2,当∠BME=90°时,
∵∠EMF=90°,
∴∠BMF=180°,
∴B、M、F在同一直线上.
∵F是BC的中点,
∴CF=DF=
CD=2.
∵△EFC与△EFM关于直线EF对称,
∴△EFC≌△EFM,
∴MF=CF=2,EC=EM.
在Rt△BCF中,由勾股定理,得
BF=2
.
∴BM=2
-2.
设EC=EM=x,则BE=8-x,
在Rt△BME中,由勾股定理,得(8-x)2-x2=(2
-2)2,
解得:x=
.
∴CE=
;
如图3,当∠BEM=90°时,
∴∠MEC=90°
∵△EFC与△EFM关于直线EF对称,
∴△EFC≌△EFM,∴∠EMF=∠C=90°,CF=FM=2,
∴四边形ECFM是正方形,
∴MF=CE=2.
∴CE=2或
.
∴∠ANE=∠ENM=90°.

∵四边形ABCD是矩形,
∴∠A=∠B=∠C=∠D=90°,AB=CD=4,AD=BC=8,
∴∠A=∠B=∠ANE=90°,
∴AB=NE=4,AN=BE.
∵EC=5,
∴BE=3,
∴AN=3.
∵△EFC与△EFM关于直线EF对称,
∴△EFC≌△EFM,
∴EC=EM=5.
在Rt△EMN中,由勾股定理,得MN=3,
∴MD=8-3-3=2.
答:MD的长为2;
(2)①如图2,当∠BME=90°时,

∵∠EMF=90°,
∴∠BMF=180°,
∴B、M、F在同一直线上.
∵F是BC的中点,
∴CF=DF=
1 |
2 |
∵△EFC与△EFM关于直线EF对称,
∴△EFC≌△EFM,
∴MF=CF=2,EC=EM.
在Rt△BCF中,由勾股定理,得
BF=2
17 |
∴BM=2
17 |
设EC=EM=x,则BE=8-x,
在Rt△BME中,由勾股定理,得(8-x)2-x2=(2
17 |
解得:x=
| ||
2 |
∴CE=
| ||
2 |

如图3,当∠BEM=90°时,
∴∠MEC=90°
∵△EFC与△EFM关于直线EF对称,
∴△EFC≌△EFM,∴∠EMF=∠C=90°,CF=FM=2,
∴四边形ECFM是正方形,
∴MF=CE=2.
∴CE=2或
| ||
2 |
看了 如图,矩形ABCD中,AB=...的网友还看了以下:
1.在三角形ABC中,BD,CE分别是边AC,BA上的中线,M,N分别是BD,CE的中点,若BC=4 2020-03-30 …
如图,在平行四边形ABCD 中,E,F分别为边AB和CD的 中点,连接 EF,DE,BF.(1)如 2020-05-16 …
如图,四边形ABCD是平行四边形,点E、F分别为AD、BC边上的点,且AE=CF求证:四边形BED 2020-05-16 …
过四边形ABCD的对角线交点O画CD的平行线,分别与边BC,AD及AB的延长线交与E,F,G,求证 2020-05-17 …
在三角形ABC中,已知BC=6,BC边上的中线AD=5.点P为线段AD上一点,过P作EF平行于BC 2020-05-24 …
已知菱形ABCD的边长为1.∠ADC=60°,等边△AEF两边分别交边DC、CB于点E、F.(1) 2020-06-08 …
四边形ABCD是由等边△ABC和顶角为120°的等腰△ABD拼成,将一个60°角顶点放在D处,将6 2020-06-18 …
已知菱形ABCD的边长为1,∠ADC=60°,等边△AEF两边分别交DC、CB于点E、F.(1)特 2020-07-30 …
在三角形ABC中,角A角B的平分线分别交对边于D,E角C的外角平分线交对边延长线于F,求证:D、E 2020-08-03 …
如图所示,已知点E、F在直角三角形ABC的边AB所在的直线上,且AE=BF,FH∥EG∥AC,FH、 2021-01-22 …