早教吧作业答案频道 -->数学-->
关于函数的奇偶性和最值问题1.若函数f(x)=4x^2-kx-8具有奇偶性,求k2.求函数f(x)=4x^2-kx-8在区间5,20的最小值g(k)3.求函数f(x)=4x^2-kx-8在区间5,20的最大值h(k)
题目详情
关于函数的奇偶性和最值问题
1.若函数f(x)=4x^2-kx-8具有奇偶性,求k
2.求函数f(x)=4x^2-kx-8在区间【5,20】的最小值g(k)
3.求函数f(x)=4x^2-kx-8在区间【5,20】的最大值h(k)
1.若函数f(x)=4x^2-kx-8具有奇偶性,求k
2.求函数f(x)=4x^2-kx-8在区间【5,20】的最小值g(k)
3.求函数f(x)=4x^2-kx-8在区间【5,20】的最大值h(k)
▼优质解答
答案和解析
1. f(x)=4x^2-kx-8 f(-x)=4x^2+kx-8
设为奇函数,则 f(x)+f(-x)=8x^2-16=0 不可能使任意的x均成立.
设为偶函数,则 f(x)-f(-x)=-2kx=0 ∴k=0
2. 因为对称轴是x=k/8
a. 当k/8<5即k<40时,函数在【5,20】递增,最小值是g(k)=92-5k;
b. 当5<=k/8<=20即40<=k<=160时,函数在【5,20】的最小值是g(k)=-k^2/16-8;
c. 当k/8>10即k>80时,函数在【5,20】递减,最小值是g(k)=1592-20k.
3. 因为对称轴是x=k/8
a. 当k/8<5即k<40时,函数在【5,20】递增,最大值是h(k)=1592-20k.
b. 当5<=k/8<=20即40<=k<=160时,函数在【5,20】的最大值是h(k)max{1592-20k,92-5k}
c. 当k/8>10即k>80时,函数在【5,20】递减,最大值是h(k)=92-5k;
设为奇函数,则 f(x)+f(-x)=8x^2-16=0 不可能使任意的x均成立.
设为偶函数,则 f(x)-f(-x)=-2kx=0 ∴k=0
2. 因为对称轴是x=k/8
a. 当k/8<5即k<40时,函数在【5,20】递增,最小值是g(k)=92-5k;
b. 当5<=k/8<=20即40<=k<=160时,函数在【5,20】的最小值是g(k)=-k^2/16-8;
c. 当k/8>10即k>80时,函数在【5,20】递减,最小值是g(k)=1592-20k.
3. 因为对称轴是x=k/8
a. 当k/8<5即k<40时,函数在【5,20】递增,最大值是h(k)=1592-20k.
b. 当5<=k/8<=20即40<=k<=160时,函数在【5,20】的最大值是h(k)max{1592-20k,92-5k}
c. 当k/8>10即k>80时,函数在【5,20】递减,最大值是h(k)=92-5k;
看了 关于函数的奇偶性和最值问题1...的网友还看了以下:
关于函数的奇偶性和最值问题1.若函数f(x)=4x^2-kx-8具有奇偶性,求k2.求函数f(x) 2020-04-26 …
1.已知(x-1)^5=ax^5+bx^4+cx^3+dx^2;+ex+f.(^5表示五次方,^4 2020-05-16 …
已知奇函数y=f(x)是R上的减函数,对任意x∈R恒有f(kx)已知奇函数y=f(x)是R上的减函 2020-05-22 …
如果函数f(x)=4x^2-kx-8在区间5,20上不是单调函数,那么实数k的取值范围是 2020-06-02 …
对于定义域为R的函数f(x)=(4x-a)/(x^2+1)(a为实常数)对于定义域为R的函数f(x 2020-07-16 …
已知f(x)=2sin(x-π/3)+1若函数y=f(kx)的周期是2π/3,当x∈[0,π/3] 2020-07-31 …
高一数学题在人教版的课本上:(有的符号我不会打)1.P44/9.已知函数y=4x^2-kx-8在〔 2020-08-01 …
已知f(x)是一次函数,且f[f(x)]=4x+6,求f(x)的解析式.应该是这么做:设f(x)=k 2020-12-03 …
一元二次方程难题!已知多项式x^2+kx+3能在证书范围内分解成两个一次因式的积,求k的值.已知二次 2020-12-26 …
已知函数f(x)=log4(4x+1)+kx是偶函数.(1)求k的值;(2)若函数h(x)=4f(x 2020-12-31 …