早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图1,在△ABC中,AB=AC,射线BP从BA所在位置开始绕点B顺时针旋转,旋转角为α(0°<α<180°)(1)当∠BAC=60°时,将BP旋转到图2位置,点D在射线BP上.若∠CDP=120°,则∠ACD∠ABD

题目详情
如图1,在△ABC中,AB=AC,射线BP从BA所在位置开始绕点B顺时针旋转,旋转角为α(0°<α<180°)
(1)当∠BAC=60°时,将BP旋转到图2位置,点D在射线BP上.若∠CDP=120°,则∠ACD___∠ABD(填“>”、“=”、“<”),线段BD、CD与AD之间的数量关系是___;
(2)当∠BAC=120°时,将BP旋转到图3位置,点D在射线BP上,若∠CDP=60°,求证:BD-CD=
3
AD;
(3)将图3中的BP继续旋转,当30°<α<180°时,点D是直线BP上一点(点P不在线段BD上),若∠CDP=120°,请直接写出线段BD、CD与AD之间的数量关系(不必证明)
作业搜
▼优质解答
答案和解析
(1)如图2,∵∠CDP=120°,
∴∠CDB=60°,
∵∠BAC=60°,
∴∠CDB=∠BAC=60°,
∴A、B、C、D四点共圆,
∴∠ACD=∠ABD.
在BP上截取BE=CD,连接AE.
在△DCA与△EBA中,
AC=AB
∠ACD=∠ABE
CD=BE

∴△DCA≌△EBA(SAS),
∴AD=AE,∠DAC=∠EAB,作业搜
∵∠CAB=∠CAE+∠EAB=60°,
∴∠DAE=60°,
∴△ADE是等边三角形,
∴DE=AD.
∵BD=BE+DE,
∴BD=CD+AD.
故答案为=,BD=CD+AD;

(2)如图3,设AC与BD相交于点O,在BP上截取BE=CD,连接AE,过A作AF⊥BD于F.
∵∠CDP=60°,作业搜
∴∠CDB=120°.
∵∠CAB=120°,
∴∠CDB=∠CAB,
∵∠DOC=∠AOB,
∴△DOC∽△AOB,
∴∠DCA=∠EBA.
在△DCA与△EBA中,
AC=AB
∠ACD=∠ABE
CD=BE

∴△DCA≌△EBA(SAS),
∴AD=AE,∠DAC=∠EAB.
∵∠CAB=∠CAE+∠EAB=120°,
∴∠DAE=120°,
∴∠ADE=∠AED=
180°-120°
2
=30°.
∵在Rt△ADF中,∠ADF=30°,
∴DF=
3
2
AD,
∴DE=2DF=
3
AD,
∴BD=DE+BE=
3
AD+CD,
∴BD-CD=
3
AD;

(3)线段BD、CD与AD之间的数量关系为BD+CD=
3
AD或CD-BD=
首页    语文    数学    英语    物理    化学    历史    政治    生物    其他     
Copyright © 2019 zaojiaoba.cn All Rights Reserved 版权所有 作业搜 
本站资料来自网友投稿及互联网,如有侵犯你的权益,请联系我们:105754049@qq.com
湘ICP备12012010号