早教吧作业答案频道 -->其他-->
如图,底面是平行四边形的四棱锥P-ABCD,点E在PD上,且PE:ED=2:1,问:在棱PC上是否存在一点F,使BF∥平面AEC?证明你的结论.
题目详情
如图,底面是平行四边形的四棱锥P-ABCD,点E在PD上,且PE:ED=2:1,问:在棱PC上是否存在一点F,使BF∥平面AEC?证明你的结论.


▼优质解答
答案和解析
存在点F为PC的中点,使BF∥平面AEC
理由如下:
取棱PC的中点F,线段PE的中点M,连接BD.设BD∩AC=O.
连接BF,MF,BM,OE.
∵PE:ED=2:1,F为PC的中点,E是MD的中点,
∴MF∥EC,BM∥OE.
∵MF⊄平面AEC,CE⊂平面AEC,BM⊄平面AEC,OE⊂平面AEC,
∴MF∥平面AEC,BM∥平面AEC.
∵MF∩BM=M,
∴平面BMF∥平面AEC.
又BF⊂平面BMF,
∴BF∥平面AEC.

理由如下:
取棱PC的中点F,线段PE的中点M,连接BD.设BD∩AC=O.
连接BF,MF,BM,OE.
∵PE:ED=2:1,F为PC的中点,E是MD的中点,
∴MF∥EC,BM∥OE.
∵MF⊄平面AEC,CE⊂平面AEC,BM⊄平面AEC,OE⊂平面AEC,
∴MF∥平面AEC,BM∥平面AEC.
∵MF∩BM=M,
∴平面BMF∥平面AEC.
又BF⊂平面BMF,
∴BF∥平面AEC.
看了 如图,底面是平行四边形的四棱...的网友还看了以下:
空间(A,B,C)点到直线x/a=y/b=z/c的距离我知道那个d=|Ax+By+Cz+D|/√(A 2020-03-30 …
过椭圆b^2x^2+a^2y^2=a^2b^2(a>b>0)的短轴端点的最长弦的长度(急!)选项: 2020-04-05 …
在四边形ABCD和四边形A,B,C,D,中,已知AB/A,B,=BC/B,C,=CD/C,D,=D 2020-05-01 …
读下图,回答下列各题。1.上面四幅图中,表示实际范围最大的是A.a图B.b图C.c图D.d图2.上 2020-05-02 …
平行四边形ABCD中ac^2+bd^2=2ab^2类比到平行六面体ABCD-A'B'C'D'是什么 2020-05-13 …
24 (a+b)/(c+d)=(√a^2+b^2)/√ (c^2+d^2)成立证明:(1)a/b= 2020-05-14 …
平面直角坐标系中,直线y=-x+5交x轴、y轴于点a,b,c(2,m)是直线ab上一点,过点c的直 2020-05-15 …
当a=-5时,代数式a的平方+2a-2a的二次方-a加a的平方-1的值为 a.29 b.-6 c. 2020-05-15 …
不等式(2-a)x2-2(a-2)x+4>0对于一切实数x都成立,则()A.{a|-2<a<2}B 2020-06-15 …
关于一元三次方程的根,高分请踊跃回答!我已经化简了;x1=1/6/a*z-2/y/a/z-1/3* 2020-07-09 …