早教吧作业答案频道 -->数学-->
A={x|=x^+4x=0}.B={x|x^+2(a+1)x+a^-1}诺AuB=B求a的值若AnB=B求a的值
题目详情
A={x|=x^+4x=0}.B={x|x^+2(a+1)x+a^-1}诺AuB=B求a的值若AnB=B求a的值
▼优质解答
答案和解析
已知集合A={x|x2+4x=0},函数B={x|x2+2(a+1)x+a2-1=0}.
(1)求使A∩B=B的实数a的取值范围;
(2)使A∪B=B的实数a的取值.
(1)∵A={x|x2+4x=0}={-4,0},又∵A∩B=B,即A⊇B.
∴B=∅或{0}或{-4}或{0,-4}.
当B=∅时,方程x2+2(a+1)x+a2-1=0无实数解,
∴△=4(a+1)2-4(a2-1)<0.
解得a<-1.
当B={0}或{-4}时,方程x2+2(a+1)x+a2-1=0有两个相等实数根,
∴△=4(a+1)2-4(a2-1)=0,得a=-1,此时B={0},满足题意.
当B={-4,0}时,方程x2+2(a+1)x+a2-1=0有两个不相等实数根-4,0,
则-2(a+1)=-4+0且a2-1=0,
解得a=1,此时B={x|x2+4x=0}={-4,0},满足题意.
综合以上可知a≤-1或a=1.
(2)由(1)得A={0,-4}.A∪B=B,即A⊆B.
又∵B为二次方程解集,其中最多有2个元素,
∴B={0,-4},即方程x2+2(a+1)x+a2-1=0有两根为0和-4.
由(1)可得a=1.
因此,若A∪B=B,则a=1.
(1)求使A∩B=B的实数a的取值范围;
(2)使A∪B=B的实数a的取值.
(1)∵A={x|x2+4x=0}={-4,0},又∵A∩B=B,即A⊇B.
∴B=∅或{0}或{-4}或{0,-4}.
当B=∅时,方程x2+2(a+1)x+a2-1=0无实数解,
∴△=4(a+1)2-4(a2-1)<0.
解得a<-1.
当B={0}或{-4}时,方程x2+2(a+1)x+a2-1=0有两个相等实数根,
∴△=4(a+1)2-4(a2-1)=0,得a=-1,此时B={0},满足题意.
当B={-4,0}时,方程x2+2(a+1)x+a2-1=0有两个不相等实数根-4,0,
则-2(a+1)=-4+0且a2-1=0,
解得a=1,此时B={x|x2+4x=0}={-4,0},满足题意.
综合以上可知a≤-1或a=1.
(2)由(1)得A={0,-4}.A∪B=B,即A⊆B.
又∵B为二次方程解集,其中最多有2个元素,
∴B={0,-4},即方程x2+2(a+1)x+a2-1=0有两根为0和-4.
由(1)可得a=1.
因此,若A∪B=B,则a=1.
看了 A={x|=x^+4x=0}...的网友还看了以下:
1.a≠0,b≠0,则a/|a|+b/|b|的不同取值的个数为()A.3B.2C.1D.02.若|x 2020-03-31 …
已知函数f(x)=2∧x-a╱2∧x+1(a>-1)1.当a=2时,证明f(x)不是奇函数2.判断函 2020-03-31 …
一个班有60人,选A的占3/5,选B的比A多3个,既不选A也不选B的,比都选AB的1/3多1个问, 2020-05-12 …
用列举法的集合问题题目是这样的:A={X∈N|9-X/9∈N}用列举法表示出来....9-X/9为 2020-05-17 …
f(x)=1/3x^3-1/2(2a+1)x^2+(a^2+a)x(1)h(x)=f'(x)/x为 2020-06-03 …
看到这句话的时候我就彻底崩溃了,希望大家能帮我说通啊,呵呵.矢量场A=A(x,y,z)在oxyz中 2020-06-14 …
设f(x)=|x(1-x)|,则()A.x=0是f(x)的极值点,但(0,0)不是曲线y=f(x) 2020-06-30 …
假设集合A满足以下条件:诺a∈A,a不等于1,则1-a分之1属于A若a属于A,则1-a分之一属于A 2020-07-03 …
映射及函数1.集合A={a,b,c}B={-1,0,1}映射f:A-->B,且f(a)+f(b)+ 2020-07-30 …
以a为底N的对数中,a的取值有什么规定?指数函数中的a又有什么规定?logaN=b中,a的取值范围 2020-08-02 …