早教吧 育儿知识 作业答案 考试题库 百科 知识分享

求函数y=tan²x-tanx,x属于[π/6,π/4]的值域

题目详情
求函数y=tan²x-tanx,x属于[π/6,π/4]的值域
▼优质解答
答案和解析
设t=tanx属于R,x∈[π/6,π/4]时,tanx∈[√3/3,1],且y=tanx在[π/6,π/4]上单调递增
根据y=t²-t的图像可知,函数在(-∞,1/2)为减,在(1/2,+∞)为增
故函数y=t²-t在[√3/3,1]为增,值域为[(1-√3)/3,0]
求值域问题,要先求出函数的单调区间,弄清楚它的单调性,再根据函数的定义区间求出符合的值域