早教吧作业答案频道 -->其他-->
以△ABC等边AB、AC为腰向外作等腰直角三角形ABE和ACD,且AB=AE,AC=AD.M为BC边的中点.MA的延长线交DE于N.(1)当∠BAC=∠BAE=∠CAD=90°时,线段AM与线段DE的数量关系与位置关系是 (要证明过程)(2)当
题目详情
以△ABC等边AB、AC为腰向外作等腰直角三角形ABE和ACD,且AB=AE,AC=AD.M为BC边的中点.MA的延长线交DE于N.
(1)当∠BAC=∠BAE=∠CAD=90°时,线段AM与线段DE的数量关系与位置关系是 (要证明过程)
(2)当∠BAC≠90°时 求证线段AM与线段DE的数量关系与位置关系.
(3)若将条件中的“M为BC的中点”改为“MN⊥ED” 求证 M为BC的中点.
以上题目都要求写证明过程 步骤要清楚.做完后我会追加30分的悬赏.
图图、

(1)当∠BAC=∠BAE=∠CAD=90°时,线段AM与线段DE的数量关系与位置关系是 (要证明过程)
(2)当∠BAC≠90°时 求证线段AM与线段DE的数量关系与位置关系.
(3)若将条件中的“M为BC的中点”改为“MN⊥ED” 求证 M为BC的中点.
以上题目都要求写证明过程 步骤要清楚.做完后我会追加30分的悬赏.
图图、

▼优质解答
答案和解析
(1)证:AM=1/2 DE
∵∠BAC=∠BAE=∠CAD=90°
∴∠DAE=90°
∴∠DAE=∠BAC
在△ADE和△ACB中,
AE=AB
∠DAE=BAC
AD=AC
∴△ADE≌△ACB(SAS)
∴DE=BC
在Rt△ABC中,
∵∠BAC=90°,AM是BC中线
∴AM=1/2 BC(直角三角形斜边中线等于斜边的一半)
∵DE=BC
∴AM=1/2 DE
(2)证:AM=1/2 DE且AM⊥DE
延长AM至P,使AM=MP,连接BP
∵M是中点
∴BM=CM
∵∠AMC与∠BMP互为对顶角
∴∠AMC=∠BMP
在△AMC和△PMB中,
CM=BM
∠AMC=∠BMP
AM=MP
∴△AMC≌△PMB(SAS)
∴AC=BP,∠MAC=∠P
在△ABP中,
∵∠ABP+∠P+∠BAP=180°
∵∠MAC=∠P
∴∠ABP=180°-(∠MAC+∠BAP)
即∠ABP=180°-∠BAC
∵∠DAE=360°-∠BAE-∠CAD-∠BAC
∵∠BAE=∠CAD=90°
∴∠DAE=180°-∠BAC
∵∠ABP=180°-∠BAC
∴∠DAE=∠ABP
∵AD=AC,AC=BP
∴AD=BP
在△ADE和△BPA中,
AE=AB
∠DAE=∠ABP
AD=BP
∴△ADE≌△BPA (SAS)
∴DE=AP
∵AP=AM+MP,AM=MP
∴AP=2AM
∵DE=AP
∴DE=2AM
∴AM=1/2 DE
∵M、A、N三点共线
∴∠MAN=180°
∵∠BAE=90°
∴∠EAN+∠BAM=90°
∵△ADE≌△BPA
∴∠NEA=∠BAM
∴∠EAN+∠NEA=90°
∵∠AND是△AEN的外角
∴∠AND=∠EAN+∠NEA=90°
∴AM⊥DE
(3)证:AM=1/2 DE且AM⊥DE
倒着推就行了.
∵∠BAC=∠BAE=∠CAD=90°
∴∠DAE=90°
∴∠DAE=∠BAC
在△ADE和△ACB中,
AE=AB
∠DAE=BAC
AD=AC
∴△ADE≌△ACB(SAS)
∴DE=BC
在Rt△ABC中,
∵∠BAC=90°,AM是BC中线
∴AM=1/2 BC(直角三角形斜边中线等于斜边的一半)
∵DE=BC
∴AM=1/2 DE
(2)证:AM=1/2 DE且AM⊥DE
延长AM至P,使AM=MP,连接BP
∵M是中点
∴BM=CM
∵∠AMC与∠BMP互为对顶角
∴∠AMC=∠BMP
在△AMC和△PMB中,
CM=BM
∠AMC=∠BMP
AM=MP
∴△AMC≌△PMB(SAS)
∴AC=BP,∠MAC=∠P
在△ABP中,
∵∠ABP+∠P+∠BAP=180°
∵∠MAC=∠P
∴∠ABP=180°-(∠MAC+∠BAP)
即∠ABP=180°-∠BAC
∵∠DAE=360°-∠BAE-∠CAD-∠BAC
∵∠BAE=∠CAD=90°
∴∠DAE=180°-∠BAC
∵∠ABP=180°-∠BAC
∴∠DAE=∠ABP
∵AD=AC,AC=BP
∴AD=BP
在△ADE和△BPA中,
AE=AB
∠DAE=∠ABP
AD=BP
∴△ADE≌△BPA (SAS)
∴DE=AP
∵AP=AM+MP,AM=MP
∴AP=2AM
∵DE=AP
∴DE=2AM
∴AM=1/2 DE
∵M、A、N三点共线
∴∠MAN=180°
∵∠BAE=90°
∴∠EAN+∠BAM=90°
∵△ADE≌△BPA
∴∠NEA=∠BAM
∴∠EAN+∠NEA=90°
∵∠AND是△AEN的外角
∴∠AND=∠EAN+∠NEA=90°
∴AM⊥DE
(3)证:AM=1/2 DE且AM⊥DE
倒着推就行了.
看了 以△ABC等边AB、AC为腰...的网友还看了以下:
已知AB=A'B' AC=A'C' AD=A'D' AC、A'C'是三角形的中线 证全等 2020-04-05 …
a,b是有理数,它们在数轴上的对应点的位置如所示:把a,-a,b,-b按照由小到大的顺序排列是() 2020-05-13 …
在关系模式中,如果属性A和B存在1对1的联系,则说( )。 A.A→B B.B→AC.A←→B D. 2020-05-23 …
在关系模式中,如果属性A和B存在1对1的联系,则说()。A.A→BB.B→AC.A←→BD.以上都不 2020-05-24 …
1.在△ABC和△A'B'C'中,如果∠A=44°15′,∠B=67°12′,∠C=68°33′, 2020-06-03 …
证明:b1b2b3可由a1a2线性表出则b1b2b3线性相关B=[b1b2b3];A=[a1a2] 2020-07-09 …
已知A,B,C三种不同的物质,将它们混合后产生的两步反应为A+C→AC;B+AC→A+BC推断该反 2020-07-13 …
问一个关于全等三角形的问题三角形ABC与三角形A'B'C'中两个三角形都是锐角三角形AB=A'B' 2020-07-19 …
在△ABC和△A'B'C'中,AB=A'B',AC=A'C',高AD=A'D',则∠C和∠C'的关系 2020-11-02 …
已知A、B、C三种不同的物质,将它们混合后发生的两步反应为A+C→AC,B+AC→A+BC,按照上述 2020-12-28 …