早教吧作业答案频道 -->其他-->
如图Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC相交于D点,E为BC的中点,连接DE、OC.(1)判断直线DE与⊙O的位置关系,证明你的结论;(2)若tan∠ACB=4/3,求sin∠ACO的值.
题目详情
如图Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC相交于D点,E为BC的中点,连接DE、OC.
(1)判断直线DE与⊙O的位置关系,证明你的结论;
(2)若tan∠ACB=4/3,求sin∠ACO的值.
(1)判断直线DE与⊙O的位置关系,证明你的结论;
(2)若tan∠ACB=4/3,求sin∠ACO的值.
▼优质解答
答案和解析
(1)判断直线DE与⊙O的位置关系,证明你的结论;
连接OE,OD,BD.
可得:角BDA=90,则DE=1/2BC=BE,
OB=OD,OE=OE
故,三角形OBE全等于三角形ODE.
即角ODE=角OBE=90
所以,DE与圆O相切.
(2)若tan∠ACB=4/3,求sin∠ACO的值.
设AB=4K,BC=3K,则可得AC=5K.
即sinBAC=3K/5K=3/5.
过O作OF垂直于AC.则有OF=OAsinBAC=2k*3/5=1.2k.
又OC^2=OB^2+BC^2=4K^2+9K^2=13K^2
OC=根号13 K.
故sinACO=OF/OC=1.2K/根号13 K=(6/5)/根号13=(6/65)根号13.
连接OE,OD,BD.
可得:角BDA=90,则DE=1/2BC=BE,
OB=OD,OE=OE
故,三角形OBE全等于三角形ODE.
即角ODE=角OBE=90
所以,DE与圆O相切.
(2)若tan∠ACB=4/3,求sin∠ACO的值.
设AB=4K,BC=3K,则可得AC=5K.
即sinBAC=3K/5K=3/5.
过O作OF垂直于AC.则有OF=OAsinBAC=2k*3/5=1.2k.
又OC^2=OB^2+BC^2=4K^2+9K^2=13K^2
OC=根号13 K.
故sinACO=OF/OC=1.2K/根号13 K=(6/5)/根号13=(6/65)根号13.
看了 如图Rt△ABC中,∠ABC...的网友还看了以下:
数学.数学.已知圆的直径为a,面积为s,求s与a的函数关系式.已知正方形周长为c,面积为s,求s与 2020-05-14 …
三角形ABO的三个顶点的坐标分别为(12,0),(8,8),(0,0),矩形CDEF是其内接矩形, 2020-06-03 …
在匀速直线运动中用v=s/t描述物体运动规律,下列说法不正确的是()A.匀速直线运动是一种平衡状态 2020-06-07 …
雨滴在空中以4m/s的速度竖直下落,人打着伞以3m/s的速度向东急行,如果希望让雨滴垂直打向伞的截 2020-06-18 …
在匀速直线运动中,下列关于公式v=s/t的说法中正确的是()A.当时间t一定时,速度v与路程S成正 2020-07-20 …
设抛物线C:x2=2py(p>0)的焦点为F,A(x,y)(x≠0)是抛物线C上的一定点.(1)已 2020-07-31 …
设抛物线C:x2=2py(p>0)的焦点为F,A(x,y)(x≠0)是抛物线C上的一定点.(1)已 2020-07-31 …
已知直线y=2x+4与x轴的交点为A,与y轴的交点为B,点C(a,0)是x轴正半轴上一动点.(1)试 2020-11-01 …
在空间坐标中,以原点为中心,有一半径为1的球面S.点P(a,b,c)与点N(0,0,1)为S上两点. 2020-11-26 …
1.在匀速直线运动中,下列关于公式V=S/T的说法正确的是:A速度v与路程s成正比.B速度v与时间t 2020-11-29 …