早教吧作业答案频道 -->数学-->
在三角形ABC中,AB=AC,P为三角形ABC内一点,且角BAP=70度角ABP=40度连接PC,当角PCB=30度时,求角PBC的度数
题目详情
在三角形ABC中,AB=AC,P为三角形ABC内一点,且角BAP=70度角ABP=40度连接PC,当角PCB=30度时,求角PBC的度数
▼优质解答
答案和解析
因为,∠BPA = 180°-∠BAP-∠ABP = 70° = ∠BAP ,
所以,BA = BP ,可得:△ABP是等腰三角形;
过点A作AD⊥BC于D,交CP延长线于O,连接OB;
过点B作BE⊥CP于E,则点E在CO延长线上;
AD是等腰△ABC底边上的高,可得:AD是BC的垂直平分线,
而且O在AD上,可得:OB = OC ,
∠OBC = ∠OCB = 30° ,
∠CBE = 90°-∠OCB = 60° ,
∠OBE = ∠CBE-∠OBC = 30° ;
因为,在△OBD和△OBE中,∠ODB = 90° = ∠OEB ,∠OBD = 30° = ∠OBE ,OB = OB ,
所以,△OBD ≌ △OBE ,
可得:OD = OE ,BD = BE ;
因为,在Rt△ABD和Rt△PBE中,AB = PB ,BD = BE ,
所以,△ABD ≌ △PBE ,
可得:AD = PE ;
因为,在△BOA和△BOP中,OA = AD-OD = PE-OE = OP ,BA = BP ,OB = OB ,
所以,△BOA ≌ △BOP ,
可得:∠OBA = ∠OBP = ½∠ABP = 20° ,
所以,∠PBC = ∠OBC-∠OBP = 10° .
所以,BA = BP ,可得:△ABP是等腰三角形;
过点A作AD⊥BC于D,交CP延长线于O,连接OB;
过点B作BE⊥CP于E,则点E在CO延长线上;
AD是等腰△ABC底边上的高,可得:AD是BC的垂直平分线,
而且O在AD上,可得:OB = OC ,
∠OBC = ∠OCB = 30° ,
∠CBE = 90°-∠OCB = 60° ,
∠OBE = ∠CBE-∠OBC = 30° ;
因为,在△OBD和△OBE中,∠ODB = 90° = ∠OEB ,∠OBD = 30° = ∠OBE ,OB = OB ,
所以,△OBD ≌ △OBE ,
可得:OD = OE ,BD = BE ;
因为,在Rt△ABD和Rt△PBE中,AB = PB ,BD = BE ,
所以,△ABD ≌ △PBE ,
可得:AD = PE ;
因为,在△BOA和△BOP中,OA = AD-OD = PE-OE = OP ,BA = BP ,OB = OB ,
所以,△BOA ≌ △BOP ,
可得:∠OBA = ∠OBP = ½∠ABP = 20° ,
所以,∠PBC = ∠OBC-∠OBP = 10° .
看了 在三角形ABC中,AB=AC...的网友还看了以下:
1.如果a≠0,p是正整数,那么下列各式中错误的是:()A.a^-p=1/a^pB.a^-p=(1/ 2020-03-30 …
1.a≠0,b≠0,则a/|a|+b/|b|的不同取值的个数为()A.3B.2C.1D.02.若|x 2020-03-31 …
基本不等式超费解130已知a>b>0,求a2+1/(a*b)+1/[a*(a-b)]的最小值.a2 2020-05-13 …
设集合A={1,a,b},B={a,a^2,ab}且A=B,求实数A,B的值因为集合需要满足互异性 2020-05-15 …
概率论与数理统计里的一道证明题设本题涉及的事件均有意义,设A,B都是事件.1.已知P(A)>0,证 2020-06-18 …
假设集合A满足以下条件:诺a∈A,a不等于1,则1-a分之1属于A若a属于A,则1-a分之一属于A 2020-07-03 …
概率论与数理统计,求做题,1.15.0设事件A,B相互独立,且P(A)=13,P(B)=15,则P 2020-07-09 …
学苑新报上的,已知点A在数轴上对应的数为a,点B在数轴上对应的数为b,且|a+4|+(b-1)²= 2020-07-15 …
P(B/A)表示什么意思?是代表在A事件发生的条件下,B事件发生的概率?可是又怎么理解这句话呢?怎 2020-07-30 …
1.1,2/3,5/9,(A),7/15,4/9A1/2B3/4C2/13D3/72.自然数P满足下 2020-10-31 …